In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.
Averna, D., Tersian, S., Tornatore E (2016). On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 19(1), 253-266 [10.1515/fca-2016-0014].
On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations
AVERNA, Diego
;TORNATORE, Elisabetta
2016-01-01
Abstract
In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.File | Dimensione | Formato | |
---|---|---|---|
Averna-Tersian-Tornatore.pdf
Solo gestori archvio
Descrizione: articolo
Tipologia:
Versione Editoriale
Dimensione
242.11 kB
Formato
Adobe PDF
|
242.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
214007_Tornatore.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
249.41 kB
Formato
Adobe PDF
|
249.41 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.