In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.

Averna, D., Tersian, S., Tornatore E (2016). On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 19(1), 253-266 [10.1515/fca-2016-0014].

On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations

AVERNA, Diego
;
TORNATORE, Elisabetta
2016-01-01

Abstract

In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.
2016
Averna, D., Tersian, S., Tornatore E (2016). On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 19(1), 253-266 [10.1515/fca-2016-0014].
File in questo prodotto:
File Dimensione Formato  
Averna-Tersian-Tornatore.pdf

Solo gestori archvio

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 242.11 kB
Formato Adobe PDF
242.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
214007_Tornatore.pdf

accesso aperto

Tipologia: Post-print
Dimensione 249.41 kB
Formato Adobe PDF
249.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/214007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact