Let (M, g) be a Riemannian manifold with a distinguished point O and assume that the geodesic distance d from O is an isoparametric function. Let Ω ⊂ M be a bounded domain, with O ∈ Ω, and consider the problem Δpu = −1 in Ω with u = 0on∂Ω, where Δp is the p-Laplacian of g. We prove that if the normal derivative ∂νu of u along the boundary of Ω is a function of d satisfying suitable conditions, then Ω must be a geodesic ball. In particular, our result applies to open balls of Rn equipped with a rotationally symmetric metric of the form g = dt2 + ρ2 (t) gS, where gS is the standard metric of the sphere.

Ciraolo, G., Vezzoni, L. (2016). A remark on an overdetermined problem in riemannian geometry. In F. Gazzola, K. Ishige, C. Nitsch, S. (a cura di), Geometric Properties for Parabolic and Elliptic PDE's (pp. 87-96). Springer New York LLC [10.1007/978-3-319-41538-3_6].

A remark on an overdetermined problem in riemannian geometry

CIRAOLO, Giulio;
2016-01-01

Abstract

Let (M, g) be a Riemannian manifold with a distinguished point O and assume that the geodesic distance d from O is an isoparametric function. Let Ω ⊂ M be a bounded domain, with O ∈ Ω, and consider the problem Δpu = −1 in Ω with u = 0on∂Ω, where Δp is the p-Laplacian of g. We prove that if the normal derivative ∂νu of u along the boundary of Ω is a function of d satisfying suitable conditions, then Ω must be a geodesic ball. In particular, our result applies to open balls of Rn equipped with a rotationally symmetric metric of the form g = dt2 + ρ2 (t) gS, where gS is the standard metric of the sphere.
2016
9783319415369
Ciraolo, G., Vezzoni, L. (2016). A remark on an overdetermined problem in riemannian geometry. In F. Gazzola, K. Ishige, C. Nitsch, S. (a cura di), Geometric Properties for Parabolic and Elliptic PDE's (pp. 87-96). Springer New York LLC [10.1007/978-3-319-41538-3_6].
File in questo prodotto:
File Dimensione Formato  
23 - Ciraolo_Vezzoni_Palinuro_2016.pdf

Solo gestori archvio

Dimensione 136.18 kB
Formato Adobe PDF
136.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/201409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact