In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary solutions.
Gambino, G., Lombardo, M., Lupo, S., Sammartino, M. (2016). Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion. RICERCHE DI MATEMATICA, 65(2), 449-467 [10.1007/s11587-016-0267-y].
Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion
GAMBINO, Gaetana;LOMBARDO, Maria Carmela;LUPO, Salvatore;SAMMARTINO, Marco Maria Luigi
2016-01-01
Abstract
In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary solutions.File | Dimensione | Formato | |
---|---|---|---|
ricerche.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
2.31 MB
Formato
Adobe PDF
|
2.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
198369.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
7.61 MB
Formato
Adobe PDF
|
7.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.