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Abstract In this paper the Turing pattern formation mechanism of a two
components reaction-diffusion system modeling the Schnakenberg chemical
reaction is considered. In [25] it was shown how the presence of linear cross-
diffusion terms favors the destabilization of the constant steady state. We
perform the weakly nonlinear (WNL) multiple scales analysis to derive the
equations for the amplitude of the Turing patterns and to show how the
cross-diffusion coefficients influence the occurrence of super–critical or sub–
critical bifurcations. We present a numerical exploration of far from equilib-
rium regimes and prove the existence of multistable stationary solutions.

1 Introduction

The aim of this paper is to describe the Turing pattern formation for the
following reaction-diffusion system, recently considered in [25]:

∂u

∂t
= Du∇

2u+Duv∇
2v + γf(u, v),

∂v

∂t
= Dv∇

2v +Dvu∇
2u+ γg(u, v),

(1)

where Du, Dv > 0 are the linear diffusion coefficients, Duv, Dvu are the cross-
diffusion coefficients, and γ is a positive constant describing the relative strength
of reaction terms (or, alternatively, the size of the spatial domain and the time
scale). The nonlinear kinetics:

f(u, v) = k1a1 − k2u+ k3u
2v,

g(u, v) = k4b1 − k3u
2v,

(2)
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describe the Schnakenberg chemical reaction, where all the coefficients a1, b1,
k1, k2, k3 and k4 are positive constants. In (1), u(x, t) and v(x, t) with x ∈ R

n

are the two chemical concentrations. We shall treat the 1D case Ω = [0, 2π].
The system is supplemented with initial conditions and Neumann boundary
conditions.

Reaction-diffusion systems have been largely employed in literature to pre-
dict the occurrence of spatial patterns in different contexts such as biological
sciences, geology, industrial process and networks of electrical circuits [2–4,7,
8,20,23,27,28]. Recently, cross-diffusion effects have been considered in models
where the gradient of the density of one species induces a flux of another species
[11,12,24,30,32,33,38]. It has been shown that, for a large class of predator-
prey or competitive kinetics without an autocatalytic term, cross-diffusion is
the responsible of Turing instability [15,17,34,35] and favors pattern formation
[16,18]. With the introduction of linear cross-diffusion terms in the Schnaken-
berg model, the destabilization of the constant steady state occurs even if the
diffusion constant of the inhibitor is smaller or equal to the diffusion constant
of the activator, see [25]. In this paper we investigate the role of the cross-
diffusion coefficients in the occurrence of super–critical or sub–critical Turing
bifurcations. When the bifurcation is super–critical, the pattern is spatially
extended, it is born from zero amplitude and it is subject to further instabil-
ities in large domains, due to the presence of different unstable modes which
interact. In contrast, when the Turing bifurcation is sub–critical, the arising
spatial structure jumps to a finite amplitude pattern (which corresponds to a
large branch amplitude into the bifurcation diagram). Such sub–critical pat-
tern is localized in the spatial domain, and robust to small fluctuations in the
bifurcation parameter values [26]. It is therefore important to investigate what
is the mechanism which helps the sub–critical Turing instability. Here we will
apply the weakly nonlinear analysis (WNL), a nonlinear bifurcation technique
based on the method of multiple scales, to derive a reduced description of
the near-critical bifurcation structure of the patterns in terms of their ampli-
tude and to distinguish the super–critical and the sub–critical pattern forming
region. We have observed that the occurrence of super– or sub–critical insta-
bility strictly depends on the distance between the values of the cross-diffusion
coefficients in the inhibitor and the activator component.

On the other hand, the WNL theory yields a reliable approximation of the
solution only close to the bifurcation threshold but it is not able to capture
the far from the equilibrium dynamics. Therefore we numerically investigate
the fully nonlinear regimes computing a bifurcation diagram which proves the
existence of stationary non-Turing solutions which are bistable with the Tur-
ing pattern. The paper is organized as follows: in Sec. 2 we perform the linear
stability analysis to find the conditions on the system parameters for the on-
set of diffusion-driven instability, draw the corresponding Turing instability
region and show how cross-diffusion favors the instability occurrence. In Sec. 3
we carry out the WNL analysis, deriving the equations for the amplitude of
the pattern both in the super–critical and the sub–critical bifurcation case and
pointing out how cross-diffusion coefficients influence the appearance of super–
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critical or sub–critical bifurcations. In the case of sub–critical bifurcation, we
show that the amplitude equation well describes the hysteretic phenomenon
which emerges due to the presence of a multiplicity of stable equilibria. Finally,
we numerically investigate far from equilibrium regimes, showing the occur-
rence of multistability between stationary Turing and non-Turing solutions.

2 Turing instability

We consider the following non dimensional form of the system (1):

∂u

∂t
= ∇2u+ dv∇

2v + γf(u, v),

∂v

∂t
= d∇2v + du∇

2u+ γg(u, v),

(3)

where d = Dv/Du is the ratio of the linear diffusion coefficients, du = Dvu/Du

and dv = Duv/Du are the ratios of the cross-diffusion coefficients and the linear
diffusion coefficients, and the reaction term is given by:

f(u, v) = a− u+ u2v,
g(u, v) = b− u2v.

(4)

The details of the above given non-dimensionalization can be found in [25].
Linearizing the system (3)-(4) in the neighborhood of its unique positive steady
state:

P0 = (u0, v0) =

(

a+ b,
b

(a+ b)2

)

, (5)

one gets:

ẇ = γJ(P0)w+Dd∇2w , w ≡

(

u− u0

v − v0

)

, (6)

where:

Dd =

(

1 dv
du d

)

and J(P0) = J =

(

b−a
a+b

(a+ b)2

− 2b
a+b

−(a+ b)2

)

.

We impose that the following condition holds:

det(Dd) = d− dudv > 0, (7)

in such a way that the reaction-diffusion system (3) is well posed.
Through linear stability analysis the following dispersion relation is found,

which gives the growth rate λ as a function of the wavenumber k:

λ2 − t(k2)λ+ h(k2) = 0, (8)
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where:

t(k2) = γ tr J − k2(1 + d),

h(k2) = det(Dd)k4 + γqk2 + γ2det(J), with q = −J11D
d
22 − J22D

d
11.

(9)

Being det(J) = (a + b)2 > 0, in order for the steady state P0 to be stable
to the spatially homogeneous mode k = 0, one has to require that tr(J) < 0.
The equilibrium loses its stability via Turing bifurcation if Re(λ) > 0 for some
k 6= 0, which is equivalent to impose h(k2) < 0 for some k 6= 0. Since, from
(7), h(k2) is an upward opening parabola (see Fig.1(a)), the following two
conditions have to be satisfied:

q < 0, (10)

q2 − 4 det(Dd)det(J) > 0. (11)

As Dd
ii > 0, i = 1, 2 and J22 < 0, condition (10) and the expression in (9)

for q imply that J11 > 0 is a necessary condition for Turing instability, which
is equivalent to assume b > a. Therefore, the Schnakenberg model has to
belong to the class of activator-inhibitor system; in particular, being J22 < 0,
J12 > 0 and J21 < 0, it is a so called cross activator-inhibitor system. The
neutral stability Turing boundary corresponds to h(k2) = 0, which has a single
minimum (k2c , dc) attained when:

k2c = γ

√

det(J)

dc − dudv
, (12)

and, by imposing q2 − 4 det(Dd)det(J) = 0, the corresponding Turing bifur-
cation value dc is obtained as follows:

dc = (det(J)− J12J21 + J11 (dvJ21 + duJ12)) /J
2
11

+ 2

√

det(J)(dvJ11 − J12)(J21 − duJ11)

J11
.

(13)

From the above discussion we can state the following theorem that was origi-
nally formulated in [25].

Theorem 1 The necessary conditions for diffusion driven instability of the
system (3) are:

i) tr(J) < 0;
ii) q = −J11D

d
22 − J22D

d
11 < 0;

iii) J11 > 0;
iv) q2 − 4 det(Dd)det(J) > 0.

Therefore at d = dc as defined in (13), stationary spatially periodic solution
whose wavenumber kc given in (12), bifurcate from the homogeneous steady
state. In Figure 1(b), the Turing instability region, i.e. the region in the pa-
rameter space where the conditions i)-iv) are satisfied, is shown in the section
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Fig. 1 (a) Plot of h(k2). (b) Turing instability region in the plane (a, b) is shadowed: in
grey the super–critical region, in black the sub–critical region (see details in Section 3). The
other parameter values are chosen as γ = 1, d = 15, du = 1 and dv = 1.

(a, b) of the parameter space. The parameter γ plays no role in the characteri-
zation of the Turing instability region, as the conditions i)− iv) do not depend
on its value. For d > dc the system admits a finite k pattern-forming station-
ary instability, see Fig.1(a). However, since the spatial eigenmodes allowed by
the boundary conditions form a discrete set, it could happen that none of the
admissible modes has positive growth factor. To guarantee the emergence of
spatial patterns at least one of the modes allowed by the boundary conditions
must fall within the interval of instability [k21 ; k

2
2 ], where k1 and k2 are the

roots of h(k2) and are proportional to γ. Recalling that the modes allowed by
the no-flux boundary conditions on the spatial domain [0, 2π] are of the form
k = n/2 with n ∈ N, one can therefore state the following theorem.

Theorem 2 Let k1 and k2 be the roots of h(k2), then the formation of the
pattern occurs if

– conditions i)-iv) of Theorem 1 are satisfied;
– γ is large enough so that there exists at least one integer n̄ such that k1 ≤

n̄/2 ≤ k2.

In absence of cross-diffusion, condition ii) of Theorem 1 reduces to dJ11 +
J22 > 0. This condition, together with i), leads to d > −J22

J11

> 1, therefore the
diffusion coefficients of the two species can not be equal and the inhibitor v
must diffuse faster than the activator u. This does not hold true in presence
of the cross diffusive coefficients (as it has been observed in [25]).

Moreover, dc in (13) must be a real number, i.e. det(J)(dvJ11− J12)(J21 −
duJ11) has to be non-negative. Being det(J) > 0, the cross-diffusion coefficients
du and dv should be chosen in one of the following two sets:

S1 =

{

(du, dv) : du ≥
J21
J11

, dv ≤
J12
J11

}

, S2 =

{

(du, dv) : du ≤
J21
J11

, dv ≥
J12
J11

}

.
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Fig. 2 (a) dc vs dv when du = 0; (b) dc vs du when dv = 0. The other parameters are fixed
as a = 0.1, b = 0.5 and γ = 1.

If (du, dv) ∈ S2, then du ≤ J21/J11 < 0. The negative cross-diffusion, discussed
e.g. in [31,10], represents an unnatural tendency of a species to move against
the concentration gradient of the other species and it is quite rare. Therefore,
in what follows, the cross-diffusion coefficients will be chosen in S1.

Let us now investigate the cases in which du or dv is equal to zero.
If du = 0 the derivative of dc with respect to dv computed at du = 0, i.e.

in absence of cross-diffusion, is given by:

∂dc
∂dv

|du=0 = −
2b

b− a

[

1 +
(a+ b)2

√

dv(b− a) + (a+ b)3

]

and it is always negative. Therefore, the threshold value dc decreases as dv
increases and, correspondingly, the Turing instability region becomes larger.
Notice, however, that the Turing instability does not arise if the cross-diffusion
coefficient becomes too large, i.e. exceeds J12/J11 = (a+ b)3/b− a. If dv = 0,
the effect is opposite. In fact, the derivative of dc with respect to du, computed
at dv = 0:

∂dc
∂du

|dv=0 =
(a+ b)3

b− a

[

1 +
b− a

(a+ b)
√

2b+ du(b− a)

]

is positive. Hence, the bifurcation value dc increases as du increases and the cor-
responding Turing instability region becomes smaller. In Fig.2 we plot the bi-
furcation value dc respectively versus dv and du, choosing a = 0.1 and b = 0.5.
The minimum value of the Turing bifurcation parameter dc attained at the
boundaries of the set S1 {(du, dv) : du ≥ −2.5, dv ≤ 0.54} is 0.81, i.e. a value
less than 1, which means that, in presence of cross-diffusion, Turing instabil-
ity occurs also not assuming short range activation-long range inhibition. Our
results are in agreement with [25]. We can conclude, in agreement with the
results in [25], that cross-diffusion in the inhibitor component only (dv = 0)
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Fig. 3 Turing region in the parameter space (a, b) for d = 15. A grey-scale is used to show
the following inclusion chain of Turing regions: the Turing region with du = 1 and dv = 0
(in dark) is the smallest one, it is included in the Turing region in absence of cross-diffusion
(in dark grey), which in turn is included in the Turing region with du = 1 and dv = 1 (in
light grey), which is finally included in that one with du = 0 and dv = 1 (in lighter grey).

produces the smallest parameter space, cross-diffusion in the activator compo-
nent only (du = 0) gives the biggest parameter space and it contains the former
one. Moreover, the Turing region corresponding to the reaction-diffusion sys-
tem without cross–diffusion (du = 0 and dv = 0) is a subspace of the Turing
region of the reaction-diffusion system with cross-diffusion in both u and v.
These behaviours are summarized in Fig.3.

3 WNL analysis and pattern formation

Once the conditions on the system parameters for the onset of diffusion driven
instability have been obtained, we perform a WNL analysis to derive a reduced
description of the near-critical bifurcation structure of the patterns in terms of
their amplitude. Defining the control parameter as the dimensionless distance
from the threshold ε2 = (d− dc)/dc, the solution of the original system (3) is
written as a weakly nonlinear expansion in ε:

w = εw1+ε2 w2 +ε3w3 + . . . , (14)

Close to the bifurcation the amplitude of the pattern evolves on a slow tem-
poral scale, therefore we separate the fast time t and slow time T :

∂

∂t
= ε

∂

∂T1
+ ε2

∂

∂T2
+ ε3

∂

∂T3
. . . . (15)

Moreover, we expand the bifurcation parameter d as follows:

d = dc + εd(1) + ε2d(2) + ε3d(3) + . . . . (16)
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Upon substitution of the expansions (14)-(16) into (3), we collect the terms
at each order in ε obtaining the following sequence of equations for the wi:
O(ε) :

Ldcw1 = 0, (17)

O(ε2) :
Ldcw2 = F, (18)

O(ε3) :
Ldcw3 = G, (19)

where Ldc = J +Ddc∇2 and:

F =
∂w1

∂T1
−

(

0 0

0 d(1)

)

∇2 w1 −γ

(

2(a+ b)u1v1 +
b

(a+b)2u
2
1

−2(a+ b)u1v1 −
b

(a+b)2 u
2
1

)

,

G =
∂w1

∂T2
+

∂w2

∂T1
−

(

0 0

0 d(1)

)

∇2 w2 −

(

0 0

0 d(2)

)

∇2 w1 −γ

(

u2
1v1

−u2
1v1

)

−γ

(

2b
(a+b)2u1 + 2(a+ b)v1 2(a+ b)u1

− 2b
(a+b)2 u1 − 2(a+ b)v1 −2(a+ b)u1

)

w2 .

The solution to the linear problem (17), which satisfies the Neumann boundary
conditions, is:

w1 = A(T1, T2, . . . ) r cos(k̄cx), with r ∈ Ker(J − k̄2cD
dc), (20)

where the amplitude of the pattern A(T1, T2, . . . ) is still arbitrary at this level,
k̄c is the first unstable admissible mode and the vector r, defined up to a
constant, is normalized as follows:

r =

(

1
M

)

with M =
−k̄2c − γ 2b

a+b

γ(a+ b)2 + k̄2cdc
. (21)

Substituting the solution (20) in (18), we assume T1 = 0 and d(1) = 0 in such a
way that the vector F is automatically orthogonal to the kernel of the adjoint
of Ldc . Hence the solution of (18) can be straightforwardly computed and,
once substituted into (19), yields the following expression for the source term
G:

G =

(

dA

dT
r+AG

(1)
1 +A3G

(3)
1

)

cos(k̄cx) +G∗, (22)

where T = T2 and the vectors G
j
1, j = 1, 3 and G∗ (containing only orthog-

onal terms to the kernel of the adjoint of Ldc) are computed in terms of the
parameters of the original system (3) as follows:

G
(1)
1 =

(

0
d(2)k2cM

)

, G
(3)
1 = −γḠ

(

w20 +
1

2
w22

)

−
3

4
γM

[

1
−1

]

,

G∗ = −
1

2
γḠw22 −

1

4
γM

[

1
−1

]

, Ḡ =

(

2b
(a+b)2 + 2(a+ b)M 2(a+ b)

− 2b
(a+b)2 − 2(a+ b)M −2(a+ b)

)

.
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Upon setting:

σ = −
< G

(1)
1 ,ψ >

< r,ψ >
, L =

< G
(3)
1 ,ψ >

< r,ψ >
, (23)

where ψ ∈ Ker
{

(

J − k̄2cD
dc

)†
}

, the solvability condition < G,ψ >= 0 for

the equation (22), leads to the following Stuart-Landau equation:

dA

dT
= σA− LA3. (24)

The stability behavior of the Stuart-Landau equation (24) and conse-
quently the pattern formation for the model system is dependent upon the
sign of the Landau constant L. When L > 0 the WNL analysis provides an
asymptotic solution for the the reaction-diffusion system (3):

Theorem 3 (Super–critical bifurcation) Assume that:

1. ε2 = (d − dc)/dc is small enough so that the uniform steady state (u0, v0)
is unstable to modes corresponding only to the eigenvalue k̄c;

2. the Landau coefficient L in (23) is greater than zero.

Then the emerging solution of the reaction-diffusion system (3) is given
by:

w = ε rA∞ cos(k̄cx) +O(ε2), (25)

where A∞ =
√

σ/L is the stable stationary state of the Stuart-Landau equation
(24) and r ∈ Ker(J − k̄2cD

dc).

We pick the system parameters in the super–critical parameter region shown in
Fig. 1(b)) and in such a way that, in the domain [0, 2π] the only admitted dis-
crete unstable mode is k̄c = 2.5. Comparing the asymptotic solution predicted
by the WNL analysis and the numerical solution of the system (3) computed
with a spectral numerical code starting from a random periodic perturbation
of the constant state, we obtain a very good agreement, see Fig. 4(a). In par-
ticular, in all the performed numerical experiments, we have verified that the
distance, evaluated in the L1 norm, between the WNL approximation (25) and
the numerical solution of the system is O(ε3).

For some choices of the system parameters, the Landau coefficient L has a
negative value. In these cases a sub–critical bifurcation occurs and Eq.(24) is
not able to predict the amplitude of the pattern. In order to capture the evo-
lution of pattern amplitude we push the WNL analysis up to O(ε5), obtaining
the following quintic Stuart-Landau equation for the amplitude A:

dA

dT
= σ̄A− L̄A3 + R̄A5. (26)

The details of the analysis and the expressions of the coefficients of the above
equation are given in Appendix A. The results can be summarized as follows:
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Fig. 4 (a) Comparison between the WNL approximated solution (dotted line) and the
numerical solution of the reaction-diffusion system (3) (solid line). (b) Pattern evolution in
the space-time plane. Here the parameters are chosen in the super–critical region: a = 0.34
and b = 0.64, du = 1, dv = 1, γ = 42 so that dc = 43.9864 and k̄c = 2.5; d = dc(1 + ε2)
with ε2 = 0.04.

Proposition 1 (WNL analysis results in the sub–critical case)
Assume that the hypotheses (1) and (2) of Theorem 3 hold and that

(3) the Landau coefficient L into (24) is negative;
(4) the coefficient R̄ into (26) is positive.

Then the emerging solution of the reaction-diffusion system (3) is given by:

w = ε rA∞ cos(kcx) +O(ε), (27)

where A∞ is a stable stationary state of the quintic Stuart-Landau equation
(26).

The emerging pattern in the sub–critical case is an O(1) perturbation of the
equilibrium (in fact the amplitude A is order ε−1, see e.g.[17]). This is of course
a contradiction with the basic assumption of the perturbation scheme, so that,
in the sub–critical case, the expected solution by the WNL analysis may fail to
capture the quantitative features of the emerging structures. Nevertheless, our
simulation in Fig.5 show that such an expansion gives a reasonable qualitative
insight on the pattern close to the sub–critical threshold.

In order to detect how too cumbersome and, therefore, are here omittedthe
cross-diffusion coefficients influence the occurrence of supercritical or sub–
critical bifurcation, we represent the Turing super- and sub–critical regions
for suitable values of du and dv. In Fig.6(a) we observe that, when du < dv
the Turing instability occurs through a supercritical bifurcation for most of
the values. The sub–critical region increases as the distance between du and
dv decreases. When du > dv the behaviour is opposite, as shown in Fig.6(b).
In fact, the Turing instability occurs through a sub–critical bifurcation for
most of the values and the supercritical region arises in correspondence of a
decreasing of the distance between du and dv.
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Fig. 5 (a) Comparison between the weakly nonlinear solution (solid line) and the numerical
solution of (3). (b) Pattern evolution in the space-time plane. The parameters are chosen as
a = 0.1, b = 0.85, γ = 5, du = 5, dv = 1, so that dc = 9.9431 and k̄c = 1.5; d = dc(1 + ε2)
with ε2 = 0.15. This pattern corresponds, in the numerically computed bifurcation diagram
Fig.8, to the point labeled by ∗.
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Fig. 6 Turing instability regions: in grey the super–critical region and in black the sub–
critical region. The parameters are chosen as d = 1 and γ = 1.

3.1 Sub–critical bifurcation and bistability

The equation (26) is also able to describe the interesting phenomenon of hys-
teresis. In the bifurcation diagram predicted by the WNL analysis, shown in
Fig. 7(a), one can see that two qualitatively different stable states coexist when
ds < d < dc. The hysteresis cycle in Fig. 7(b) shows that, starting with a value
of the parameter above dc, the solution stabilizes to a pattern corresponding
to the stable large amplitude branch of the bifurcation diagram. Decreasing d
below dc the pattern does not disappear, as the stable amplitude solution per-
sists on the upper branch. Still decreasing d below ds the pattern disappears,
as the amplitude solution jumps to the constant steady state. The formation
of the pattern is again obtained only increasing the parameter d above dc.
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Fig. 7 (a) The bifurcation diagram predicted by WNL analysis in the sub–critical case (the
stable branches are drawn with red thick line, the unstable ones with black thin line). (b)
A hysteresis cycle and the corresponding pattern evolution in the sub–critical case. As d
varies, the fixed values of the other parameters are the same as in Fig. 5.

To investigate the system behavior far from equilibrium, we computed the
corresponding bifurcation diagram as the parameter d is varied in the inter-
val d ∈ [9, 18], using the numerical continuation software AUTO. In Fig.8
the numerically calculated bifurcation diagram of the point xmax where the
species u attains its maximum Umax on the large amplitude branch is shown.
Near the threshold dc, the bifurcation diagram predicted using the WNL anal-

10 11 12 13 14 15 16 17
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

d

Umax

B

C

A

Fig. 8 Numerically calculated bifurcation diagram: the stable branches are drawn in red
thick line, the unstable ones in black thin line. As d varies, the fixed values of the other
parameters are the same as in Fig. 5. The patterns corresponding to the points marked by
∗ and • are shown in Fig.5 and Fig.9, respectively.

ysis qualitative agrees with the one numerically computed. As d increases
from dc, the homogeneous unstable steady state undergoes to a bifurcation
at dA ≃ 12.11, at the point labeled by A in Fig.8, where two different unsta-
ble branches emerge. Secondary bifurcations occur on both branches, at the
points B (with dB ≃ 11.12) and C (with dC ≃ 14.52), respectively, which give
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rise to stable stationary patterns, whose existence cannot be predicted by the
weakly nonlinear expansion. The pattern computed on the upper branch for
d ≃ 11.45 (at the point labeled by a solid bullet in Fig.8) is shown in Fig.9. It
is a far-from-equilibrium stationary solution which is different, for amplitude
and form, from the expected pattern on the basis on the WNL theory for the
same value of the parameter d, which has been depicted in Fig.5. Its analyti-
cal investigation is a subject of great interest (see e.g. [21,22]) and will be the
object of a forthcoming paper. Therefore, for a fixed value of the bifurcation
parameter, bistability occurs and two different stable patterns coexist when
d > dB. The pattern solution computed on the lower stable branch arising

0
0.4

0.8

1.2

x

u

2π

(a)

x

t
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0.9

1

1.1

2π

(b)

Fig. 9 Stationary solution far from the equilibrium. (a) Profile of the solution. (b) Pattern
evolution in the space-time plane. The parameters are chosen as in in Fig. 5 and d = 11.45.

from the point C differs from the corresponding one on the upper branch only
for a phase shift and, therefore, is not shown here.

4 Conclusions

In this paper we have investigated the Turing instability induced by linear
cross-diffusion for the Schnakenberg reaction-diffusion system. By performing
a WNL analysis, we have predicted the amplitude of the pattern near the
threshold and we have determined the super– and the sub–critical instability
regions whose extent depends on the distance between the values of the cross
diffusion coefficients. Multiple branches of stable solutions are also observed
leading to hysteresis next to the threshold and far from the equilibrium.

Other aspects of the problem could be examined. For example it is well
known how the interaction between the Turing and the Hopf instability mech-
anisms, can give rise to non–stationary patterns [37]; the Schnakenberg ki-
netics supports the Hopf bifurcation and one should analyze the parameter
region where spatio–temporal structures could emerge as the result of this
codimension-2 bifurcation. Moreover it has been recently shown [1,34] how
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oscillatory dynamics can also be induced, away from threshold, by strong non-
linear mechanisms, leading also to the onset of chaotic phenomena [5,6]: one
could ask whether this behavior is supported by the system considered in
the present paper. We mention that a typical far from the equilibrium phe-
nomenon is the appearance of localized structures like spots or mesa patterns
that could be rigorously constructed though matched asymptotic procedures.
We also report that in some of our numerical tests we have seen the appear-
ance of metastable structure that, either disappear giving rise to different
patterns or decay to equilibrium; it would be of interest to study these long
time behaviors via the techniques used in [29]; or to investigate how the co-
herent structures supported by the Schnakenberg system are modified by the
presence of non-autonomous kinetic terms of the form considered in [9]. The
design of suitable finite-dimensional controls of feedback or adaptive type [13,
36,14,19] to control the complex behavior supported by our system would also
deserve some attention.
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A Appendix: The quintic Stuart-Landau equation

Taking into account that (24) still holds for the amplitude A (although now the derivative
with respect to T is a partial derivative), the solvability condition < G, ψ >= 0 for (19) is
satisfied and the solution is:

w3 =
(

Aw31 +A3w32
)

cos (kcx) +A3w33 cos (3kcx) , (28)

where the expression for the vectors w3i, i = 1, 2, 3 can be computed solving the following
linear systems:

L1w31 = σ r+G
(1)
1 , L2w32 = −L r+G

(3)
1 , L3w33 = G3,

where we have defined Li = ΓJ − i2k2cD
dc .

At O(ε4) the resulting equation is Ldcw3 = H, where:

H = 2A
∂A

∂T2
w20 +A

2H
(2)
0 +A4H

(4)
0 +

(

2A
∂A

∂T
w22 +A

2H
(2)
2 + A4H

(4)
2

)

cos(2k̄cx)

+ A4H
(4)
4 cos(4k̄cx),
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and:

H
(2)
0 =

1

2
γ

(

2b
(a+b)2

+ 2(a + b)M 2(a + b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

w31,

H
(4)
0 =

1

2
γ

(

2b
(a+b)2

+ 2(a + b)M 2(a + b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

w32

+ γ

(

b

(a+b)2
w20(1) + 2(a + b)w20(2) +M 1

2

−
b

(a+b)2
w20(1) − 2(a + b)w20(2) −M −

1
2

)

w20

+
1

2
γ

(

b

(a+b)2
w22(1) + 2(a + b)w22(2) +M 1

2

−
b

(a+b)2
w22(1) − 2(a + b)w22(2) −M −

1
2

)

w22

H
(2)
2 =

(

0 0

0 4d(2)k2c

)

w22 +
1

2
γ

(

2b
(a+b)2

+ 2(a+ b)M 2(a + b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

w31,

H
(4)
2 =

1

2
γ

(

2b
(a+b)2

+ 2(a + b)M 2(a+ b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

(w32 +w33)

+ γ

(

b

(a+b)2
w20(1) + 2(a + b)w20(2) +M 1

2

−
b

(a+b)2
w20(1) − 2(a + b)w20(2)−M −

1
2

)

w22

+ γ

(

b

(a+b)2
w22(1) + 2(a + b)w22(2) +M 1

2

−
b

(a+b)2
w22(1) − 2(a + b)w22(2)−M −

1
2

)

w20,

H
(4)
4 =

1

2
γ

(

2b
(a+b)2

+ 2(a + b)M 2(a+ b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

w33

+
1

2
γ

(

b

(a+b)2
w22(1) + 2(a + b)w22(2) +M 1

2

−
b

(a+b)2
w22(1) − 2(a + b)w22(2) −M −

1
2

)

w22 .

The solvability condition for is automatically satisfied and the solution is:

w4 = A2w40 + A4w41 +
(

A2w42 +A4w43

)

cos(2kcx) + A4w44 cos(4kcx) , (29)

where the vector w4i, i = 1, . . . , 4, are the solutions of the following linear systems:

ΓKw40 = 2σw20 +H
(2)
0 , ΓKw41 = −2Lw20 +H

(4)
0 ,

L2w42 = 2σw22 +H
(2)
2 , L3w43 = −2Lw22 +H

(4)
2 , L4w44 = H4.

At O(ε5) the resulting equation is Ldcw3 = P, where:

P =

(

∂A

∂T4
r+

∂A

∂T2
w31 +3A2 ∂A

∂T2
w32 +AP

(1)
1 + A3P

(3)
1 + A5P

(5)
1

)

cos(k̄cx) (30)

+

(

3A2 ∂A

∂T2
w33 +A

3P
(3)
3 + A5P

(5)
3

)

cos(3k̄cx) + A5P
(5)
5 cos(5k̄cx), (31)
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and:

P
(1)
1 =

(

0 0

0 d(2)k2c

)

w31 +

(

0

d(4)k2cM

)

,

P
(3)
1 =

(

0 0

0 d(2)k2c

)

w32 −γ

(

2b
(a+b)2

+ 2(a + b)M 2(a + b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

(

w40 +
1

2
w42

)

− γ

(

2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) +
1
2

−
2b

(a+b)2
w20(1) − 2(a+ b)w20(2) −2(a + b)w20(1) −

1
2

)

w31

−
1

2
γ

(

2b
(a+b)2

w22(1) + 2(a + b)w22(2) 2(a + b)w22(1) +
1
2

−
2b

(a+b)2
w22(1) − 2(a + b)w22(2) −2(a + b)w22(1) −

1
2

)

w31,

P
(5)
1 = −γ

(

2b
(a+b)2

+ 2(a + b)M 2(a + b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

(

w41 +
1

2
w43

)

− γ

(

2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) +
1
2

−
2b

(a+b)2
w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) −

1
2

)

w32

− γ

(

2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) +
1
2

−
2b

(a+b)2
w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) −

1
2

)

(w32 +w33)

− γ

( (

w20(1) +
1
2
w22(1)

)

M 2w20(1) +w22(1)

−
(

w20(1) +
1
2
w22(1)

)

M −2w20(1)−w22(1)

)

w20

−
1

2
γ





(

w20(1) +w22(1)
)

M 2
(

w20(1) +w22(1)
)

−

(

w20(1) +w22(1)
)

M −2
(

w20(1) +w22(1)
)



w22,

P
(3)
3 =

(

0 0

0 9d(2)k2c

)

w33 −
1

2
γ

(

2b
(a+b)2

+ 2(a + b)M 2(a + b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

w42

− γ

(

2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) +
1
2

−
2b

(a+b)2
w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) −

1
2

)

w31,
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P
(5)
3 = −

1

2
γ

(

2b
(a+b)2

+ 2(a + b)M 2(a + b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

(w43 +w44)

− γ

(

2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a + b)w20(1) +
1
2

−
2b

(a+b)2
w20(1) − 2(a + b)w20(2) −2(a + b)w20(1) −

1
2

)

w33

−
1

2
γ

(

2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a+ b)w20(1) +
1
2

−
2b

(a+b)2
w20(1) − 2(a + b)w20(2) −2(a + b)w20(1)−

1
2

)

w32

−
1

2
γ

(

M w20(1) 2w20(1)
−M w20(1) −2w20(1)

)

w22

−
1

2
γ

(

M w22(1) 2w22(1)
−M w22(1) −2w22(1)

)(

w20 +
1

2
w22

)

,

P
(5)
5 = −

1

2
γ

(

2b
(a+b)2

+ 2(a + b)M 2(a + b)

−
2b

(a+b)2
− 2(a + b)M −2(a + b)

)

w44

−
1

2
γ

(

2b
(a+b)2

w20(1) + 2(a + b)w20(2) 2(a+ b)w20(1) +
1
2

−
2b

(a+b)2
w20(1) − 2(a + b)w20(2) −2(a + b)w20(1)−

1
2

)

w33

−
1

4
γ

(

M w22(1) 2w22(1)
−M w22(1) −2w22(1)

)

w22 .

Putting:

σ̃ = −
< P

(1)
1 ,ψ >

< r,ψ >
, L =

< 3σw32 −Lw31 +P
(3)
1 ,ψ >

< r,ψ >
, R =

< 3Lw32 +P
(5)
1 ,ψ >

< r,ψ >
(32)

the Fredholm alternative < P,ψ > for the equation (31) leads to:

∂A

∂T4
= σ̃A− L̃A3 + R̃A5. (33)

Adding up (33) to (24) one gets (26), with:

σ̄ = σ + ε2σ̃, L̄ = L+ ε2L̃, R̄ = ε2R̃. (34)
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