The advances of short interfering RNA (siRNA)-mediated therapy provide a powerful option for the treatment of many diseases, including cancer, by silencing the expression of targeted genes involved in the progression of the pathology. On this regard, a new pH-responsive polycation derived from inulin, Inulin-g-imidazole-g-diethylenetriamine (INU-IMI-DETA), was designed and employed to produce INU-IMI-DETA/siRNA “Inulin COmplex Nanoaggregates” (ICONs). The experimental results showed that INU-IMI-DETA exhibited strong cationic characteristics and high solubility in the pH range 3−5 and selfaggregation triggered by pH increase and physiological salt concentration. INUIMI- DETA showed as well a high buffering capacity in the endosomal pH range of 7.4−5.1. In the concentration range between 25 and 1000 μg/mL INU-IMI-DETA had no cytotoxic effect on breast cancer cells (MCF-7) and no lytic effect on human red blood cells. ICONs were prepared by two-step procedure involving complexation and precipitation into DPBS buffer (pH 7.4) to produce siRNA-loaded nanoaggregates with minimized surface charge and suitable size for parenteral administration. Bafilomycin A1 inhibited transfection on MCF-7 cells, indicating that the protonation of the imidazole groups in the endolysosome pathway favors the escape of the system from endolysosomal compartment, increasing the amount of siRNA that can reach the cytoplasm.

Sardo C., Craparo, E., Porsio, B., Giammona, G., Cavallaro, G. (2016). Improvements in Rational Design Strategies of Inulin Derivative Polycation for siRNA Delivery. BIOMACROMOLECULES, 17, 2352-2366.

Improvements in Rational Design Strategies of Inulin Derivative Polycation for siRNA Delivery

SARDO, Carla;CRAPARO, Emanuela Fabiola;Porsio, Barbara;GIAMMONA, Gaetano;CAVALLARO, Gennara
2016-01-01

Abstract

The advances of short interfering RNA (siRNA)-mediated therapy provide a powerful option for the treatment of many diseases, including cancer, by silencing the expression of targeted genes involved in the progression of the pathology. On this regard, a new pH-responsive polycation derived from inulin, Inulin-g-imidazole-g-diethylenetriamine (INU-IMI-DETA), was designed and employed to produce INU-IMI-DETA/siRNA “Inulin COmplex Nanoaggregates” (ICONs). The experimental results showed that INU-IMI-DETA exhibited strong cationic characteristics and high solubility in the pH range 3−5 and selfaggregation triggered by pH increase and physiological salt concentration. INUIMI- DETA showed as well a high buffering capacity in the endosomal pH range of 7.4−5.1. In the concentration range between 25 and 1000 μg/mL INU-IMI-DETA had no cytotoxic effect on breast cancer cells (MCF-7) and no lytic effect on human red blood cells. ICONs were prepared by two-step procedure involving complexation and precipitation into DPBS buffer (pH 7.4) to produce siRNA-loaded nanoaggregates with minimized surface charge and suitable size for parenteral administration. Bafilomycin A1 inhibited transfection on MCF-7 cells, indicating that the protonation of the imidazole groups in the endolysosome pathway favors the escape of the system from endolysosomal compartment, increasing the amount of siRNA that can reach the cytoplasm.
2016
Settore CHIM/09 - Farmaceutico Tecnologico Applicativo
Sardo C., Craparo, E., Porsio, B., Giammona, G., Cavallaro, G. (2016). Improvements in Rational Design Strategies of Inulin Derivative Polycation for siRNA Delivery. BIOMACROMOLECULES, 17, 2352-2366.
File in questo prodotto:
File Dimensione Formato  
Biomacromol2016.pdf

Solo gestori archvio

Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/183520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact