We review a series of studies exemplifying some applications of single-pulse and paired-transcranial magnetic stimulation (TMS) in the study of spatial attention and of its deficits. We will focus primarily on sensory extinction, the failure to consciously perceive a contralesional sensory stimulus only during bilateral stimulation of homologous surfaces. TMS studies in healthy controls show that it is possible either to interfere or modulate the excitability of the parietal cortex during sensory (i.e. tactile and visual) attentional tasks, thus reproducing a condition of virtual extinction. TMS studies in patients with unilateral (mainly right) brain damage show that the modulation of the unbalance in conical excitability between the two cerebral hemispheres transiently improves contralesional sensory extinction. These studies show the possible application of TMS not only as a research method in healthy subjects, but also as a tool for inducing brain excitability changes in patients with sensory extinction, which could be useful for supporting the rehabilitation of this deficit.
OLIVERI M, CALTAGIRONE C (2006). Suppression of extinction with TMS in humans: From healthy controls to patients. BEHAVIOURAL NEUROLOGY, 17, 163-167 [10.1155/2006/393924].
Suppression of extinction with TMS in humans: From healthy controls to patients.
OLIVERI, Massimiliano;
2006-01-01
Abstract
We review a series of studies exemplifying some applications of single-pulse and paired-transcranial magnetic stimulation (TMS) in the study of spatial attention and of its deficits. We will focus primarily on sensory extinction, the failure to consciously perceive a contralesional sensory stimulus only during bilateral stimulation of homologous surfaces. TMS studies in healthy controls show that it is possible either to interfere or modulate the excitability of the parietal cortex during sensory (i.e. tactile and visual) attentional tasks, thus reproducing a condition of virtual extinction. TMS studies in patients with unilateral (mainly right) brain damage show that the modulation of the unbalance in conical excitability between the two cerebral hemispheres transiently improves contralesional sensory extinction. These studies show the possible application of TMS not only as a research method in healthy subjects, but also as a tool for inducing brain excitability changes in patients with sensory extinction, which could be useful for supporting the rehabilitation of this deficit.File | Dimensione | Formato | |
---|---|---|---|
393924.pdf
accesso aperto
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.