The bursting pulsar, GRO J1744-28, went again in outburst after ~18 yr of quiescence in 2014 mid-January. We studied the broad-band, persistent, X-ray spectrum using X-ray data from a XMM-Newton observation, performed almost at the peak of the outburst, and from a close INTEGRAL observation, performed 3 d later, thus covering the 1.3-70.0 keV band. The spectrum shows a complex continuum shape that cannot be modelled with standard high-mass X-ray pulsar models, nor by two-components models. We observe broad-band and peaked residuals from 4 to 15 keV, and we propose a self-consistent interpretation of these residuals, assuming they are produced by cyclotron absorption features and by a moderately smeared, highly ionized, reflection component. We identify the cyclotron fundamental at ~4.7 keV, with hints for two possible harmonics at ~10.4 and ~15.8 keV. The position of the cyclotron fundamental allows an estimate for the pulsar magnetic field of (5.27 ± 0.06) × 1011 G, if the feature is produced at its surface. From the dynamical and relativistic smearing of the disc reflected component, we obtain a lower limit estimate for the truncated accretion disc inner radius (≳100 Rg) and for the inclination angle (18°-48°). We also detect the presence of a softer thermal component that we associate with the emission from an accretion disc truncated at a distance from the pulsar of 50-115 Rg. From these estimates,we derive the magnetospheric radius for disc accretion to be ~0.2 times the classical Alfvén radius for radial accretion.
D'Aì, A., Di Salvo, T., Iaria, R., García, J., Sanna, A., Pintore, F., et al. (2015). GRO J1744-28: An intermediate B-field pulsar in a low-mass X-ray binary. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 449(4), 4288-4303 [10.1093/mnras/stv531].
GRO J1744-28: An intermediate B-field pulsar in a low-mass X-ray binary
DI SALVO, Tiziana;IARIA, Rosario;Matranga, Marco;GALIANO, Carmela;
2015-01-01
Abstract
The bursting pulsar, GRO J1744-28, went again in outburst after ~18 yr of quiescence in 2014 mid-January. We studied the broad-band, persistent, X-ray spectrum using X-ray data from a XMM-Newton observation, performed almost at the peak of the outburst, and from a close INTEGRAL observation, performed 3 d later, thus covering the 1.3-70.0 keV band. The spectrum shows a complex continuum shape that cannot be modelled with standard high-mass X-ray pulsar models, nor by two-components models. We observe broad-band and peaked residuals from 4 to 15 keV, and we propose a self-consistent interpretation of these residuals, assuming they are produced by cyclotron absorption features and by a moderately smeared, highly ionized, reflection component. We identify the cyclotron fundamental at ~4.7 keV, with hints for two possible harmonics at ~10.4 and ~15.8 keV. The position of the cyclotron fundamental allows an estimate for the pulsar magnetic field of (5.27 ± 0.06) × 1011 G, if the feature is produced at its surface. From the dynamical and relativistic smearing of the disc reflected component, we obtain a lower limit estimate for the truncated accretion disc inner radius (≳100 Rg) and for the inclination angle (18°-48°). We also detect the presence of a softer thermal component that we associate with the emission from an accretion disc truncated at a distance from the pulsar of 50-115 Rg. From these estimates,we derive the magnetospheric radius for disc accretion to be ~0.2 times the classical Alfvén radius for radial accretion.File | Dimensione | Formato | |
---|---|---|---|
GRO_J1744-28_An_intermediate_B-field_pulsar_in_a_l-1.pdf
accesso aperto
Descrizione: Pre-print su ArXiv
Tipologia:
Pre-print
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
stv531.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.