Noninvasive estimation of brain activity via magnetoencephalography (MEG) involves an inverse problem whose solution requires an accurate and fast forward solver. To this end, we propose the Method of Fundamental Solutions (MFS) as a meshfree alternative to the Boundary Element Method (BEM). The solution of the MEG forward problem is obtained, via the Method of Particular Solutions (MPS), by numerically solving a boundary value problem for the electric scalar potential, derived from the quasi-stationary approximation of Maxwell’s equations. The magnetic field is then computed by the Biot-Savart law. Numerical experiments have been carried out in a realistic single-shell head geometry. The proposed solver is compared with a state-of-the-art BEM solver. A good agreement and a reduced computational load show the attractiveness of the meshfree approach.
Ala, G., Fasshauer, G.E., Francomano, E., Ganci, S., McCourt, M.J. (2015). A Meshfree Solver for the MEG Forward Problem. IEEE TRANSACTIONS ON MAGNETICS, 51(3) [10.1109/TMAG.2014.2356134].
A Meshfree Solver for the MEG Forward Problem
ALA, Guido;FRANCOMANO, Elisa;GANCI, Salvatore
;
2015-01-01
Abstract
Noninvasive estimation of brain activity via magnetoencephalography (MEG) involves an inverse problem whose solution requires an accurate and fast forward solver. To this end, we propose the Method of Fundamental Solutions (MFS) as a meshfree alternative to the Boundary Element Method (BEM). The solution of the MEG forward problem is obtained, via the Method of Particular Solutions (MPS), by numerically solving a boundary value problem for the electric scalar potential, derived from the quasi-stationary approximation of Maxwell’s equations. The magnetic field is then computed by the Biot-Savart law. Numerical experiments have been carried out in a realistic single-shell head geometry. The proposed solver is compared with a state-of-the-art BEM solver. A good agreement and a reduced computational load show the attractiveness of the meshfree approach.File | Dimensione | Formato | |
---|---|---|---|
paper_revised_1.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
682.57 kB
Formato
Adobe PDF
|
682.57 kB | Adobe PDF | Visualizza/Apri |
07093445 (1).pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
439.19 kB
Formato
Adobe PDF
|
439.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.