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A Meshfree Solver for the MEG Forward Problem
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Noninvasive estimation of brain activity via magnetoencephalography (MEG) involves an inverse problem whose solution requires
an accurate and fast forward solver. To this end, we propose the Method of Fundamental Solutions (MFS) as a meshfree alternative
to the Boundary Element Method (BEM). The solution of the MEG forward problem is obtained, via the Method of Particular
Solutions (MPS), by numerically solving a boundary value problem for the electric scalar potential, derived from the quasi-stationary
approximation of Maxwell’s equations. The magnetic field is then computed by the Biot-Savart law. Numerical experiments have
been carried out in a realistic single-shell head geometry. The proposed solver is compared with a state-of-the-art BEM solver. A
good agreement and a reduced computational load show the attractiveness of the meshfree approach.

Index Terms—Biomagnetics, magnetoencephalography (MEG), method of fundamental solutions (MFS), meshfree methods.

I. INTRODUCTION

THE PROBLEM of estimating the sources of neuronal
activity in the human brain from electroencephalography

(EEG) and magnetoencephalography (MEG) signals is of great
interest both in clinical and basic health research. The brain
activity generates small electric potential and magnetic field
distributions that can be measured by means of an array of
electrodes on the scalp, for EEG, or superconducting quantum
interference devices (SQUID) located near the head, for MEG.

EEG can detect activity both in the sulci and at the top of
the cortical gyri, whereas MEG is most sensitive to activity
originating in sulci and provides a better spatial resolution [1].

Starting from a set of measured data (electric potential or
magnetic fields), an inverse problem must be solved to estimate
the corresponding neuronal activity sources. To this end, an
accurate forward solver must be designed as a component in
the solution of this inverse problem. Such a numerical tool
computes the scalp potential and/or magnetic fields generated
by a set of current sources representing the neural activity,
given knowledge of both the physical properties of the bio-
logical tissues and the geometry of the head [2].

Here we focus the attention on the solution of the MEG
forward problem. So far, the M/EEG forward problem has
been addressed by traditional mesh-based numerical methods,
whose literature is vast (see, e.g., [2] and references therein).
Among these methods, the Boundary Element Method (BEM)
has become the method of choice because of its efficiency
with respect to the Finite Elements Method (FEM), and it
is currently implemented in widely used software packages
for M/EEG source analysis, e.g. FieldTrip [3]. However, the
BEM involves costly numerical integration, requires an often
nontrivial meshing of the domain boundaries at high quality
and could potentially introduce mesh-related artifacts in the
reconstructed neural activation pattern.
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Meshless methods have been previously proposed for solv-
ing the EEG [4] and the MEG [5] forward problem. However,
they are domain methods, thus they may be outperformed by
BEM from a computational efficiency standpoint.

II. MEG FORWARD PROBLEM FORMULATION

Common models rely upon a piecewise-constant conduc-
tivity approximation so that the head is described as a vol-
ume conductor composed of electrically homogeneous com-
partments. Compartment boundaries are extracted by means
of anatomical MR or CT images. A detailed geometrical
model with at least three compartments (brain, skull, scalp)
is mandatory in solving the EEG forward problem, because
electric potentials at the scalp are strongly distorted due to
the conductivity difference between the tissues composing
the head. In contrast, magnetic fields depend mostly on the
electrical currents flowing in the high conductivity tissues,
i.e., in the brain. A recent study [6] has shown, by means of
a BEM approach, that the three nested compartment model
performs best for the MEG forward problem. However a
simple homogeneous model of the high-conductivity brain
compartment – as proposed first in [7] and commonly adopted
later on – provides acceptable accuracy. In this work, as a first
step, the homogeneous single-shell model is considered.

Let Ω be the homogeneous domain that represents the brain,
with boundary ∂Ω and electrical conductivity σ. The volume
surrounding Ω can be considered as the ambient air, with
negligible electrical conductivity. In light of the maximum
significant frequency in bio-electromagnetic phenomena and
of the characteristics of biological tissues, the MEG forward
problem can be formulated by means of the quasi-stationary
approximation of Maxwell’s equations [1]. It is convenient to
express the current density field at a point p ∈ Ω as the sum of
the source (impressed) current density Js(p) and the volume
current density, i.e.,

J(p) = Js(p)− σ∇φ(p), (1)
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where φ is the electric scalar potential. We shall concentrate
our attention on the simplest case of a single neural source,
representable by a current dipole of moment Q located at p′ ∈
Ω [1]. What follows can be extended to the case of many
dipoles by simple application of the superposition principle.

With this position, the source current density is given by

Js(p) = Qδ(p− p′), (2)

where δ(p − p′) is the Dirac delta function centered at the
source point p′.

The solution of the MEG forward problem involves the
solution of a potential problem on the boundary ∂Ω. In fact
the following equation holds:

∇2B(p) = −µ∇× J(p), (3)

where µ is the magnetic permeability of the medium, supposed
to be equal to that of air, and the current density on the right-
hand side is given by (1) if the electric scalar potential at p
is known. The solution of (3) under the assumption of a null
magnetic field at an infinite distance from the sources, is given
by the Biot-Savart law [8]:

B(p) =
µ

4π

∫
Ω

J(p∗)× p− p∗

‖p− p∗‖3
dv(p∗). (4)

where dv is the differential volume element for Ω.
By using (1), the integral above can be split into two parts

by considering the contribution Bs(p) of the source current
density, and the contribution of the volume current density:

B(p) = Bs(p)− µ

4π
σ

∫
Ω

∇φ(p∗)× p− p∗

‖p− p∗‖3
dv(p∗). (5)

For a dipole source, the following analytic expression of the
first term Bs(p) is known [8]:

Bs(p) =
µ

4π
Q× p− p′

‖p− p′‖3
. (6)

The vector identity ∇φ × ∇g = ∇ × (φ∇g), with g =
‖p−p′‖−1 and ∇g = (p−p′)‖p−p′‖−3, and the application
of the following corollary of the Divergence Theorem:∫

Ω

∇× Fdv =

∫
∂Ω

n× Fds (7)

where F = φ∇g, n is the unit vector normal to the boundary
and ds is the differential surface element for ∂Ω, allow for
the transformation of the volume integral over Ω in (5) into a
surface integral over the boundary ∂Ω [9]:

B(p) = Bs(p)− µ

4π
σ

∫
∂Ω

φ(p∗)n(p∗)× p− p∗

‖p− p∗‖3
ds(p∗).

(8)
The electric scalar potential φ in Ω due to a current dipole is

governed by a boundary value problem (BVP) for the Poisson
equation [8]. In fact, by taking into account the continuity
equation for J, i.e.:

∇ · (Js(p)− σ∇φ(p)) = 0 (9)

the following BVP is obtained:{
σ∇2φ(p) = ∇ · Js(p), p ∈ Ω,

σn(p) · ∇φ(p) = 0, p ∈ ∂Ω.
(10)
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Fig. 1. Collocation points (crosses) and centers (dots) distributed on the
physical boundary ∂Ω and on the fictitious boundary Γ, respectively.

Once φ is known on the boundary, the magnetic field at any
point outside the head can be evaluated by (8).

III. METHODOLOGY

We propose the application of the Method of Fundamental
Solutions (MFS) [10] via the Method of Particular Solutions
(MPS) for solving the potential problem (10). The MFS
approximates the solution u of the given homogeneous BVP
by a linear combination of fundamental solutions K of the
governing homogeneous PDE, i.e.,

u(p) ≈
∑
ξj∈Ξ

cjK(p, ξj), p ∈ Ω, (11)

where Ξ is a set of M centers located on a fictitious boundary
Γ outside the physical domain Ω (Fig. 1) in order to avoid po-
tential singularities of K in the representation of the solution.
The coefficients cj of the linear combination are determined
by enforcing equality of u(p) to the boundary conditions at a
finite set of N collocation points.

An inhomogeneous problem can be reduced to a homo-
geneous one by the MPS, i.e., by considering the solution
u as the sum of a particular solution up and its associated
homogeneous solution uh.

The governing PDE of the scalar potential problem in Ω is
a Poisson equation (see Section II). Let us express the scalar
potential function in Ω, by means of the MPS, as

φ(p) = φh(p) + φp(p). (12)

An analytical expression for a particular solution φp of the
PDE of the BVP in Ω, when a neural source is located at
p′ ∈ Ω, is known [8]:

φp(p) =
1

4πσ
Q · p− p′

‖p− p′‖3
. (13)

Therefore, the homogeneous term φh is given by the solu-
tion of the following BVP:{

∇2φh(p) = 0, p ∈ Ω,

n(p) · ∇φh(p) = −n(p) · ∇φp(p) p ∈ ∂Ω.
(14)

and it can be approximated, by means of the MFS, as a linear
combination of fundamental solutions for the 3D Laplace
equation, namely: K(p, q) = (4π‖p− q‖)−1. The centers on
the fictitious boundary can be picked by a simple procedure
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of deflation of the physical boundary with respect to its
centroid. By introducing the MFS approximation, the solution
is obtained by solving a linear system of size N ×M .

The only geometric quantities needed to compute the poten-
tials are the normals to the boundary and the distances between
the boundary collocation points and the centers; therefore,
the proposed method is truly meshfree. Moreover, no costly
numerical integration is needed and its implementation is
straightforward.

It is worth mention that for certain problems and suitably
smooth data and domains, the proposed method has been
proved to be exponentially convergent [11], whereas the con-
vergence rate of BEM and FEM is limited by the maximum
degree of the polynomials adopted as basis functions.

IV. NUMERICAL RESULTS

In order to assess the viability of the proposed approach in
solving the MEG forward problem for a realistic single-shell
head geometry, we have carried out a comparison with the
BEM state-of-the-art formulation [12].

We consider the FieldTrip default subject anatomy. The
inner skull surface is extracted by segmentation from the
anatomical T1-weighted MRI of the subject’s head. For BEM,
the surface is described by a set of points connected by a
triangle mesh. This mesh is constructed by projecting the
vertices of an almost evenly triangulated sphere – whose center
coincides with the centroid of the domain – onto the inner
skull surface. Surface normals are straightforwardly derived
from the triangle mesh. For MFS, a set of points is sufficient to
describe the surface. For the sake of consistency with the BEM
model, the collocation points on the surface are picked as the
vertices of a triangle mesh that is constructed by the projection
method described above for BEM, and the surface normals are
evaluated by means of the same mesh. However, it is worth
mention that surface normals can be estimated without forming
a mesh by meshless methods for surface representation [13],
[14].

The MFS linear system is solved in the least squares sense
and a procedure of deflation of the physical boundary is
adopted to locate the centers on the fictitious boundary. In
particular we use a deflation coefficient equal to 1.3. This
value of the deflation coefficient has been chosen empirically
on the basis of numerical tests we carried out on spherical
geometries for which the analytical solution of the potential
problem is known [2].

The numerical experiments are conducted on a workstation
equipped with a six core CPU Intel Xeon E5-2630 @ 2.30GHz
and 24GB of RAM.

First we compare the accuracy of the MFS solver and the
BEM solver in evaluating the scalar potential on the inner skull
surface. A single unitary dipole source is simulated in the brain
(with electrical conductivity equal to 0.2 S/m) at roughly 1 cm
from the inner skull surface. This choice is appropriate if one
considers the location of the real neural sources in the cerebral
cortex. Since there is no way of knowing the ground truth
solution for realistic geometries, we choose a BEM solution
obtained with a fine mesh (4500 triangles) as a reference.

The convergence to the reference solution is tested both for
MFS and BEM. The relative 2-norm is adopted to estimate the
accuracy with respect to the reference solution, as reported in
Table I, where N denotes the number of collocation points
for MFS or the number of triangles for BEM. For the MFS
solver the number of centers is half the number of collocation
points.

TABLE I
PERFORMANCE COMPARISON BETWEEN MFS AND BEM FOR THE

POTENTIAL PROBLEM.

N
MFS BEM

Accuracy CPU Time [s] Accuracy CPU Time [s]

500 0.3269 0.101 0.5455 2.566

1500 0.1137 0.299 0.1783 10.140

2500 0.0930 1.189 0.1885 24.602

3500 0.0821 2.756 0.1159 45.307

4500 0.0585 5.585 N/A 74.508

The results shown in Table I suggest that the MFS solver
outperforms the BEM solver. Moreover, the MFS provides
a reduction in CPU time that becomes more significant as
higher accuracy is requested, since no numerical integration is
required in the assembly of the system matrix. Fig. 2 shows
the potential maps obtained with BEM and with MFS at the
finest discretizations.

Reusing the same real geometry, we now compare the com-
puted external magnetic fields. In this case, we have assumed a
set of 1000 unitary dipole sources randomly distributed inside
the brain, with random orientations.

Fig. 3 shows the magnetic field maps on a SQUID helmet
obtained with BEM and with MFS, respectively, at the finest
discretizations. The considered magnetic field component is
the one normal to the helmet surface. The maps depict a good
agreement between the two solutions, with a 2-norm relative
difference equal to 0.1220.

V. CONCLUSION

In this paper we have shown that the solution of the MEG
forward problem can be sought by the Method of Fundamental
Solutions via the Method of Particular Solutions. The proposed
method is a meshfree, boundary-type, integration-free and
easy-to-implement alternative to mesh-based methods, such as
the widely used Boundary Element Method.

We have successfully compared the proposed approach with
the state-of-the-art BEM formulation in solving the MEG
forward problem with a realistic single-shell head model. The
method needs no meshing algorithms in the pre-processing
stage – which simplifies the experimental setup – and no
numerical quadrature to assemble the system matrix – which
improves the computational load and is important when incor-
porating the forward solver within the solution of the inverse
problem needed for identification of the neural sources.

Future work will be oriented to the application of the
proposed approach to multi-compartment models.
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Fig. 2. Electric scalar potential [V] on the inner skull surface due to a unitary dipole calculated with (a) BEM and (b) MFS at the finest discretizations (BEM
with 4500 triangles, MFS with 4500 collocation points and 2250 centers).

Fig. 3. Magnetic field [T] on the SQUID helmet (red dots as measurement points) due to 1, 000 unitary dipoles randomly distributed inside the brain with
random orientations, calculated with (a) BEM and (b) MFS at the finest discretizations (BEM with 4500 triangles, MFS with 4500 collocation points and
2250 centers).
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