In the last decades several research laboratories have shown an increasing interest aimed at extending the applicability of Electron Spin Resonance (ESR) dosimetry to radiotherapy with different types of radiation beams. ESR is a spectroscopic method for investigating the structure and dynamics of such paramagnetic species. Free radicals are known to be produced when a compound is irradiated with ionizing radiations. The concentration of radiation-induced free radicals is proportional to the energy released inside in the medium and this allows for dosimetric measurements through ESR technique which able to quantitatively determine the radical concentration.The use of alanine as a dosimetric material gave the possibility to apply ESR spectroscopy for high-dose standardization and dose control in radiation processing. The ESR dosimetric method has many advantages such as simple and rapid dose evaluation, the readout procedure is non-destructive, linear response of many organic and inorganic compounds. ESR detectors show a behavior that suggest possible applications for various kinds of beams used for radiation therapy. Nowadays, the most widely used organic compound as a dosimeter is the alanine. However, many researches are in progress with the aim at improving sensitivity of ESR dosimetry for doses much smaller than 1 Gy. More sensitive materials than alanine are needed to make the ESR dosimeter competitive with other dosimetry systems. Our research group has started an investigation of the ESR response of some phenols compounds for possible ESR dosimetric applications suitable features, such as high efficiency of radiation-matter energy transfer and radical stability at room temperature. Phenols are compounds possessing a benzene ring attached to a OH group. After irradiation the final product is a stable phenoxy radical. The stability of such radical can be improved by adding other alkyl chains which can be attached to the benzene ring. In particular, the phenol octadecyl-3-(3,5-di-tert.butyl-4-hydroxyphenyl)-propionate gave interesting results. Moreover, its high molecular weight, the low volatility and the compatibility with the dosimeter binding material (wax) are advantages with respect to lower molecular weight phenols. In this work we report the ESR investigation of phenols exposed to clinical photon and electron beams. The dosimetric features of these ESR dosimeters (dependence on microwave power and modulation amplitude, their response after gamma and electron irradiations, dependence on beam type and energy, the detection limits for both beam typologies, signal stability after irradiation) were investigated and the results are reported.
GALLO, S., PANZECA, S., IACOVIELLO, G., LONGO, A., BENTIVOGLIO, A., BRAI, M., et al. (2015). Phenol compounds as new materials for Electron Spin Resonance (ESR) dosimetry in clinical photon and electron beams. In ATTI FISMAT 2015 (pp. 291-292).
Phenol compounds as new materials for Electron Spin Resonance (ESR) dosimetry in clinical photon and electron beams
GALLO, Salvatore;PANZECA, Salvatore;LONGO, Anna;BRAI, Maria;MARRALE, Maurizio
2015-01-01
Abstract
In the last decades several research laboratories have shown an increasing interest aimed at extending the applicability of Electron Spin Resonance (ESR) dosimetry to radiotherapy with different types of radiation beams. ESR is a spectroscopic method for investigating the structure and dynamics of such paramagnetic species. Free radicals are known to be produced when a compound is irradiated with ionizing radiations. The concentration of radiation-induced free radicals is proportional to the energy released inside in the medium and this allows for dosimetric measurements through ESR technique which able to quantitatively determine the radical concentration.The use of alanine as a dosimetric material gave the possibility to apply ESR spectroscopy for high-dose standardization and dose control in radiation processing. The ESR dosimetric method has many advantages such as simple and rapid dose evaluation, the readout procedure is non-destructive, linear response of many organic and inorganic compounds. ESR detectors show a behavior that suggest possible applications for various kinds of beams used for radiation therapy. Nowadays, the most widely used organic compound as a dosimeter is the alanine. However, many researches are in progress with the aim at improving sensitivity of ESR dosimetry for doses much smaller than 1 Gy. More sensitive materials than alanine are needed to make the ESR dosimeter competitive with other dosimetry systems. Our research group has started an investigation of the ESR response of some phenols compounds for possible ESR dosimetric applications suitable features, such as high efficiency of radiation-matter energy transfer and radical stability at room temperature. Phenols are compounds possessing a benzene ring attached to a OH group. After irradiation the final product is a stable phenoxy radical. The stability of such radical can be improved by adding other alkyl chains which can be attached to the benzene ring. In particular, the phenol octadecyl-3-(3,5-di-tert.butyl-4-hydroxyphenyl)-propionate gave interesting results. Moreover, its high molecular weight, the low volatility and the compatibility with the dosimeter binding material (wax) are advantages with respect to lower molecular weight phenols. In this work we report the ESR investigation of phenols exposed to clinical photon and electron beams. The dosimetric features of these ESR dosimeters (dependence on microwave power and modulation amplitude, their response after gamma and electron irradiations, dependence on beam type and energy, the detection limits for both beam typologies, signal stability after irradiation) were investigated and the results are reported.File | Dimensione | Formato | |
---|---|---|---|
FisMat_Ph.pdf
accesso aperto
Descrizione: Abstract
Tipologia:
Versione Editoriale
Dimensione
464.74 kB
Formato
Adobe PDF
|
464.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.