In this paper, we provide a method to estimate the space-time intensity of a branching-type point process by mixing nonparametric and parametric approaches. The method accounts simultaneously for the estimation of the different model components, applying a forward predictive likelihood estimation approach to semi-parametric models.

Adelfio, G., Chiod, i.M. (2014). Space-time Point Processes semi-parametric estimation with predictive measure information. In GRASPA Working Papers.

Space-time Point Processes semi-parametric estimation with predictive measure information

Adelfio, G;CHIODI, Marcello
2014-01-01

Abstract

In this paper, we provide a method to estimate the space-time intensity of a branching-type point process by mixing nonparametric and parametric approaches. The method accounts simultaneously for the estimation of the different model components, applying a forward predictive likelihood estimation approach to semi-parametric models.
2014
Adelfio, G., Chiod, i.M. (2014). Space-time Point Processes semi-parametric estimation with predictive measure information. In GRASPA Working Papers.
File in questo prodotto:
File Dimensione Formato  
metma-graspa-adelfio.pdf

accesso aperto

Dimensione 150.61 kB
Formato Adobe PDF
150.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/133712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact