The rise of antibiotic-resistance as well as the reduction of investments by pharmaceutical companies in the development of new antibiotics have stimulated the investigation for alternative strategies to conventional antibiotics. Many antimicrobial peptides show a high specificity for prokaryotes and a low toxicity for eukaryotic cells and, due to their mode of action the development of resistance is considered unlikely. We recently characterised an antimicrobial peptide that was called Paracentrin 1 from the 5-kDa peptide fraction from the coelomocyte cytosol of the Paracentrotus lividus. In this study, the chemically synthesised Paracentrin 1, was tested for its antimicrobial and antibiofilm properties against reference strains of Gram positive and Gram negative. The Paracentrin 1 was active against planktonic form of staphylococcal strains (reference and isolates) and Pseudomonas aeruginosa ATCC 15442 at concentrations ranging from 12.5 to 6.2 mg/ml. The Paracentrin 1 was able to inhibit biofilm formation of staphylococcal and Pseudomonas aeruginosa strains at concentrations ranging from 3.1 to 0.75 mg/ml. We consider the tested peptide as a good starting molecule for novel synthetic derivatives with improved pharmaceutical potential

Schillaci, D., Cusimano, M.G., Spinello, A., Barone, G., Russo, D., Vitale, M., et al. (2014). Paracentrin 1, a synthetic antimicrobial peptide from the sea-urchin Paracentrotus lividus, interferes with staphylococcal and Pseudomonas aeruginosa biofilm formation. AMB EXPRESS, 4:78 [10.1186/s13568-014-0078-z].

Paracentrin 1, a synthetic antimicrobial peptide from the sea-urchin Paracentrotus lividus, interferes with staphylococcal and Pseudomonas aeruginosa biofilm formation

SCHILLACI, Domenico;CUSIMANO, Maria Grazia;SPINELLO, Angelo;BARONE, Giampaolo;RUSSO, Debora;PARRINELLO, Daniela;ARIZZA, Vincenzo
2014-01-01

Abstract

The rise of antibiotic-resistance as well as the reduction of investments by pharmaceutical companies in the development of new antibiotics have stimulated the investigation for alternative strategies to conventional antibiotics. Many antimicrobial peptides show a high specificity for prokaryotes and a low toxicity for eukaryotic cells and, due to their mode of action the development of resistance is considered unlikely. We recently characterised an antimicrobial peptide that was called Paracentrin 1 from the 5-kDa peptide fraction from the coelomocyte cytosol of the Paracentrotus lividus. In this study, the chemically synthesised Paracentrin 1, was tested for its antimicrobial and antibiofilm properties against reference strains of Gram positive and Gram negative. The Paracentrin 1 was active against planktonic form of staphylococcal strains (reference and isolates) and Pseudomonas aeruginosa ATCC 15442 at concentrations ranging from 12.5 to 6.2 mg/ml. The Paracentrin 1 was able to inhibit biofilm formation of staphylococcal and Pseudomonas aeruginosa strains at concentrations ranging from 3.1 to 0.75 mg/ml. We consider the tested peptide as a good starting molecule for novel synthetic derivatives with improved pharmaceutical potential
2014
Settore BIO/19 - Microbiologia Generale
Settore CHIM/03 - Chimica Generale E Inorganica
Settore BIO/05 - Zoologia
Schillaci, D., Cusimano, M.G., Spinello, A., Barone, G., Russo, D., Vitale, M., et al. (2014). Paracentrin 1, a synthetic antimicrobial peptide from the sea-urchin Paracentrotus lividus, interferes with staphylococcal and Pseudomonas aeruginosa biofilm formation. AMB EXPRESS, 4:78 [10.1186/s13568-014-0078-z].
File in questo prodotto:
File Dimensione Formato  
s13568-014-0078-z.pdf

accesso aperto

Descrizione: articolo principale
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/102121
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact