We address the problem of estimating generalized linear models when some covariate values are missing but imputations are available to fill-in the missing values. This situation generates a bias-precision tradeoff in the estimation of the model parameters. Extending the generalized missing-indicator method proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem of model uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We also propose a block model averaging strategy that incorporates information on the missing-data patterns and is computationally simple. An empirical application illustrates our approach.

Dardanoni, V., De Luca, G., Modica, S., Peracchi, F. (2015). Model averaging estimation of generalized linear models with imputed covariates. JOURNAL OF ECONOMETRICS, 184(2), 452-463 [10.1016/j.jeconom.2014.06.002].

Model averaging estimation of generalized linear models with imputed covariates

DARDANONI, Valentino
;
DE LUCA, Giuseppe
;
MODICA, Salvatore
;
2015-01-01

Abstract

We address the problem of estimating generalized linear models when some covariate values are missing but imputations are available to fill-in the missing values. This situation generates a bias-precision tradeoff in the estimation of the model parameters. Extending the generalized missing-indicator method proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem of model uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We also propose a block model averaging strategy that incorporates information on the missing-data patterns and is computationally simple. An empirical application illustrates our approach.
2015
Dardanoni, V., De Luca, G., Modica, S., Peracchi, F. (2015). Model averaging estimation of generalized linear models with imputed covariates. JOURNAL OF ECONOMETRICS, 184(2), 452-463 [10.1016/j.jeconom.2014.06.002].
File in questo prodotto:
File Dimensione Formato  
Dardanoni, De Luca, Modica, Peracchi (2015).pdf

Solo gestori archvio

Dimensione 446.57 kB
Formato Adobe PDF
446.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/97660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact