In the first part of this paper we show how a simple system, a 2-dimensional quantum harmonic oscillator, can be described in terms of pseudo-bosonic variables. This apparently strange choice is useful when the natural Hilbert space of the system, L2(R2) in this case, is, for some reason, not the most appropriate. This is exactly what happens for the D2 type quantum Calogero model considered in the second part of the paper, where the Hilbert space L2(R2) appears to be an unappropriate choice, since the eigenvectors of the relevant hamiltonian are not square-integrable. Then we discuss how a certain intertwining operator arising from the model can be used to fix a different Hilbert space more useful. © 2013 Elsevier Ltd.

Bagarello, F. (2013). Pseudo-bosons for the D2 type quantum Calogero model. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 407(1), 90-96 [10.1016/j.jmaa.2013.05.006].

Pseudo-bosons for the D2 type quantum Calogero model

BAGARELLO, Fabio
2013-01-01

Abstract

In the first part of this paper we show how a simple system, a 2-dimensional quantum harmonic oscillator, can be described in terms of pseudo-bosonic variables. This apparently strange choice is useful when the natural Hilbert space of the system, L2(R2) in this case, is, for some reason, not the most appropriate. This is exactly what happens for the D2 type quantum Calogero model considered in the second part of the paper, where the Hilbert space L2(R2) appears to be an unappropriate choice, since the eigenvectors of the relevant hamiltonian are not square-integrable. Then we discuss how a certain intertwining operator arising from the model can be used to fix a different Hilbert space more useful. © 2013 Elsevier Ltd.
2013
Bagarello, F. (2013). Pseudo-bosons for the D2 type quantum Calogero model. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 407(1), 90-96 [10.1016/j.jmaa.2013.05.006].
File in questo prodotto:
File Dimensione Formato  
2013JMAA.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 607.53 kB
Formato Adobe PDF
607.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/95764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact