The Lie algebra sl2=sl2(K) of 2×2 traceless matrices over a field K has only three non-trivial G-gradings when G is a group, the ones induced by G=Z2, Z2×Z2 and Z. Here we prove that when char(K)=0, the variety varG(sl2) of G-graded Lie algebras generated by sl2, is a minimal variety of exponential growth, and in case G=Z2×Z2 or Z, varG(sl2) has almost polynomial growth. © 2013 Elsevier B.V.

Giambruno, A., Da Silva Souza, M. (2014). Minimal varieties of graded Lie algebras of exponential growth and the special Lie algebra sl2. JOURNAL OF PURE AND APPLIED ALGEBRA, 218(8), 1517-1527 [10.1016/j.jpaa.2013.12.003].

Minimal varieties of graded Lie algebras of exponential growth and the special Lie algebra sl2

GIAMBRUNO, Antonino;
2014-01-01

Abstract

The Lie algebra sl2=sl2(K) of 2×2 traceless matrices over a field K has only three non-trivial G-gradings when G is a group, the ones induced by G=Z2, Z2×Z2 and Z. Here we prove that when char(K)=0, the variety varG(sl2) of G-graded Lie algebras generated by sl2, is a minimal variety of exponential growth, and in case G=Z2×Z2 or Z, varG(sl2) has almost polynomial growth. © 2013 Elsevier B.V.
2014
Giambruno, A., Da Silva Souza, M. (2014). Minimal varieties of graded Lie algebras of exponential growth and the special Lie algebra sl2. JOURNAL OF PURE AND APPLIED ALGEBRA, 218(8), 1517-1527 [10.1016/j.jpaa.2013.12.003].
File in questo prodotto:
File Dimensione Formato  
Giambruno,Souza-2014-JPAA.pdf

Solo gestori archvio

Descrizione: articolo
Dimensione 278.36 kB
Formato Adobe PDF
278.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/93467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact