Fremlin [Ill J Math 38:471-479, 1994] proved that a Banach space valued function is McShane integrable if and only if it is Henstock and Pettis integrable. In this paper we prove that the result remains valid also in case of multifunctions with compact convex values being subsets of an arbitrary Banach space (see Theorem 3.4). Di Piazza and Musial [Monatsh Math 148:119-126, 2006] proved that if X is a separable Banach space, then each Henstock integrable multifunction which takes as its values convex compact subsets of X is a sum of a McShane integrable multifunction and a Henstock integrable function. Here we show that such a decomposition is true also in case of an arbitrary Banach space (see Theorem 3.3). We prove also that Henstock and McShane integrable multifunctions possess Henstock and McShane (respectively) integrable selections (see Theorem 3.1).

Di Piazza, L., Musial, K. (2014). Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values. MONATSHEFTE FÜR MATHEMATIK, 173(4), 459-470 [10.1007/s00605-013-0594-y].

Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values

DI PIAZZA, Luisa;
2014-01-01

Abstract

Fremlin [Ill J Math 38:471-479, 1994] proved that a Banach space valued function is McShane integrable if and only if it is Henstock and Pettis integrable. In this paper we prove that the result remains valid also in case of multifunctions with compact convex values being subsets of an arbitrary Banach space (see Theorem 3.4). Di Piazza and Musial [Monatsh Math 148:119-126, 2006] proved that if X is a separable Banach space, then each Henstock integrable multifunction which takes as its values convex compact subsets of X is a sum of a McShane integrable multifunction and a Henstock integrable function. Here we show that such a decomposition is true also in case of an arbitrary Banach space (see Theorem 3.3). We prove also that Henstock and McShane integrable multifunctions possess Henstock and McShane (respectively) integrable selections (see Theorem 3.1).
2014
Di Piazza, L., Musial, K. (2014). Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values. MONATSHEFTE FÜR MATHEMATIK, 173(4), 459-470 [10.1007/s00605-013-0594-y].
File in questo prodotto:
File Dimensione Formato  
Pettis_Henstock_Mc_Monatsh.Math.pdf

Solo gestori archvio

Dimensione 375.89 kB
Formato Adobe PDF
375.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/89383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact