In this paper we prove the existence of at least three classical solutions for the problem \begin{equation*} \left\{ \begin{array}{l} - \left( |u'|^{p-2} u' \right)' = \lambda f(t,u) h(u') \\ u(a)=u(b)=0, \end{array} \right. \end{equation*} \noindent when $\lambda$ lies in an explicitly determined open interval. Our main tool is a very recent three critical points theorem stated in D.Averna, G.Bonanno, {\em A three critical point theorem and its applications to the ordinary Dirichlet problem}, Topol. Methods Nonlinear Anal., 22 (2003), p.93-104.

AVERNA, D., BONANNO, G. (2004). Three solutions for a quasilinear two point boundary value problem involving the one-dimensional p-Laplacian. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 47, 257-270.

Three solutions for a quasilinear two point boundary value problem involving the one-dimensional p-Laplacian

AVERNA, Diego;
2004-01-01

Abstract

In this paper we prove the existence of at least three classical solutions for the problem \begin{equation*} \left\{ \begin{array}{l} - \left( |u'|^{p-2} u' \right)' = \lambda f(t,u) h(u') \\ u(a)=u(b)=0, \end{array} \right. \end{equation*} \noindent when $\lambda$ lies in an explicitly determined open interval. Our main tool is a very recent three critical points theorem stated in D.Averna, G.Bonanno, {\em A three critical point theorem and its applications to the ordinary Dirichlet problem}, Topol. Methods Nonlinear Anal., 22 (2003), p.93-104.
2004
AVERNA, D., BONANNO, G. (2004). Three solutions for a quasilinear two point boundary value problem involving the one-dimensional p-Laplacian. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 47, 257-270.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/8879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact