The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesting substantial scrubbing of magmatic S by the hydrothermal system. However, the fumarolic carbon dioxide (CO2) output is 4606160 tons/day (mean6SD), which is surprisingly high for a dormant volcano in the hydrothermal stage of activity, and results in a combined (fumarolesþsoil) CO2 output of 1560 tons/ day. Assuming magma to be the predominant source, we propose that the current CO2 output can be supplied by either (i) a large (0.6–4.6 km3), deeply stored (>7 km) magmatic source with low CO2 contents (0.05–0.1 wt%) or (ii) by a small to medium-sized ( 0.01–0.1 km3) but CO2-rich (2 wt%) magma, possibly stored at pressures of 100 to 120 MPa. Independent geophysical evidence (e.g., inferred from geodetic and gravity data) is needed to distinguish between these two possibilities.

Aiuppa, A., Tamburello, G., Di Napoli, R., Cardellini, C., Chiodini, G., Giudice, G., et al. (2013). First observations of the fumarolic gas output from a restless caldera: implications for the current period of unrest (2005–2013) at Campi Flegrei. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, 14(14), 4153-4169.

First observations of the fumarolic gas output from a restless caldera: implications for the current period of unrest (2005–2013) at Campi Flegrei

AIUPPA, Alessandro;TAMBURELLO, Giancarlo;DI NAPOLI, Rossella;PEDONE, Maria
2013-01-01

Abstract

The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesting substantial scrubbing of magmatic S by the hydrothermal system. However, the fumarolic carbon dioxide (CO2) output is 4606160 tons/day (mean6SD), which is surprisingly high for a dormant volcano in the hydrothermal stage of activity, and results in a combined (fumarolesþsoil) CO2 output of 1560 tons/ day. Assuming magma to be the predominant source, we propose that the current CO2 output can be supplied by either (i) a large (0.6–4.6 km3), deeply stored (>7 km) magmatic source with low CO2 contents (0.05–0.1 wt%) or (ii) by a small to medium-sized ( 0.01–0.1 km3) but CO2-rich (2 wt%) magma, possibly stored at pressures of 100 to 120 MPa. Independent geophysical evidence (e.g., inferred from geodetic and gravity data) is needed to distinguish between these two possibilities.
2013
Aiuppa, A., Tamburello, G., Di Napoli, R., Cardellini, C., Chiodini, G., Giudice, G., et al. (2013). First observations of the fumarolic gas output from a restless caldera: implications for the current period of unrest (2005–2013) at Campi Flegrei. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, 14(14), 4153-4169.
File in questo prodotto:
File Dimensione Formato  
Aiuppa et al._2013_Campi Flegrei.pdf

accesso aperto

Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/87764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 81
social impact