Background: Bioactive molecules have received increasing attention due to their nutraceutical attributes and anticancer, antioxidant, antiproliferative and apoptosis-inducing properties. This study aimed to investigate the biological properties of carotenoids extracted from Archaea. Methods: Halophilic Archaea strains were isolated from the brine of a local crystallizer pond (TS7) of a solar saltern at Sfax, Tunisia. The most carotenoid-producing strain (M8) was investigated on heptoma cell line (HepG2), and its viability was assessed by the MTT-test. The cells were incubated with different sub-lethal extract rates, with carotenoid concentrations ranging from 0.2 to 1.5 μM. Antioxidant activity was evaluated through exposing the cells to sub-lethal extract concentrations for 24 hours and then to oxidative stress induced by 60 μM arachidonic acid and 50 μM H2O2. Results: Compared to non-treated cells, bacterial carotenoid extracts inhibited HepG2 cell viability (50%). A time and dose effect was observed, with cell viability undergoing a significant (P < 0.05) decrease with extract concentration. After exposure to oxidative stress, control cells underwent a significant (P < 0.05) decrease in viability as compared to the non-treated cells. Conclusions: The bacterial extracts under investigation were noted to exhibit the strongest free radical scavenging activity with high carotenoid concentrations. The carotenoid extract also showed significant antiproliferative activity against HepG2 human cancer cell lines.

Abbes, M., Baati H, Guermazi, S., Messina, C., Santulli, A., Gharsallah, N., et al. (2013). Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE, 13(13-255), 1-8 [http://www.biomedcentral.com/1472-6882/13/255].

Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern

MESSINA, Concetta Maria;SANTULLI, Andrea;
2013-01-01

Abstract

Background: Bioactive molecules have received increasing attention due to their nutraceutical attributes and anticancer, antioxidant, antiproliferative and apoptosis-inducing properties. This study aimed to investigate the biological properties of carotenoids extracted from Archaea. Methods: Halophilic Archaea strains were isolated from the brine of a local crystallizer pond (TS7) of a solar saltern at Sfax, Tunisia. The most carotenoid-producing strain (M8) was investigated on heptoma cell line (HepG2), and its viability was assessed by the MTT-test. The cells were incubated with different sub-lethal extract rates, with carotenoid concentrations ranging from 0.2 to 1.5 μM. Antioxidant activity was evaluated through exposing the cells to sub-lethal extract concentrations for 24 hours and then to oxidative stress induced by 60 μM arachidonic acid and 50 μM H2O2. Results: Compared to non-treated cells, bacterial carotenoid extracts inhibited HepG2 cell viability (50%). A time and dose effect was observed, with cell viability undergoing a significant (P < 0.05) decrease with extract concentration. After exposure to oxidative stress, control cells underwent a significant (P < 0.05) decrease in viability as compared to the non-treated cells. Conclusions: The bacterial extracts under investigation were noted to exhibit the strongest free radical scavenging activity with high carotenoid concentrations. The carotenoid extract also showed significant antiproliferative activity against HepG2 human cancer cell lines.
2013
Settore BIO/10 - Biochimica
Settore BIO/06 - Anatomia Comparata E Citologia
Abbes, M., Baati H, Guermazi, S., Messina, C., Santulli, A., Gharsallah, N., et al. (2013). Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE, 13(13-255), 1-8 [http://www.biomedcentral.com/1472-6882/13/255].
File in questo prodotto:
File Dimensione Formato  
abbes et al 2013 publish.pdf

Solo gestori archvio

Dimensione 718.53 kB
Formato Adobe PDF
718.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/86563
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 70
social impact