Let J(n) be the Jordan algebra of a degenerate symmetric bilinear form. In the first section we classify all possible G-gradings on J(n) where G is any group, while in the second part we restrict our attention to a degenerate symmetric bilinear form of rank n - 1, where n is the dimension of the vector space V defining J(n). We prove that in this case the algebra J(n) is PI-equivalent to the Jordan algebra of a nondegenerate bilinear form.
Martino, F. (2013). Polynomial identities for the Jordan algebra of a degenerate symmetric bilinear form. LINEAR ALGEBRA AND ITS APPLICATIONS, 439(12), 4080-4089 [10.1016/j.laa.2013.10.013].
Polynomial identities for the Jordan algebra of a degenerate symmetric bilinear form
MARTINO, Fabrizio
2013-01-01
Abstract
Let J(n) be the Jordan algebra of a degenerate symmetric bilinear form. In the first section we classify all possible G-gradings on J(n) where G is any group, while in the second part we restrict our attention to a degenerate symmetric bilinear form of rank n - 1, where n is the dimension of the vector space V defining J(n). We prove that in this case the algebra J(n) is PI-equivalent to the Jordan algebra of a nondegenerate bilinear form.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0024379513006320-main.pdf
Solo gestori archvio
Descrizione: pdf
Dimensione
244.81 kB
Formato
Adobe PDF
|
244.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.