We prove the irreducibility of the Hurwitz spaces which parametrize Galois coverings of P^1 whose Galois group is an arbitrary Weyl group and the local monodromies are reflections. This generalizes a classical theorem due to Clebsch and Hurwitz.
Kanev, V. (2006). Hurwitz spaces of Galois coverings of P^1, whose Galois groups are Weyl groups. JOURNAL OF ALGEBRA, 305, 442-456 [10.1016/j.jalgebra.2006.01.008].
Data di pubblicazione: | 2006 | |
Titolo: | Hurwitz spaces of Galois coverings of P^1, whose Galois groups are Weyl groups | |
Autori: | ||
Citazione: | Kanev, V. (2006). Hurwitz spaces of Galois coverings of P^1, whose Galois groups are Weyl groups. JOURNAL OF ALGEBRA, 305, 442-456 [10.1016/j.jalgebra.2006.01.008]. | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jalgebra.2006.01.008 | |
Abstract: | We prove the irreducibility of the Hurwitz spaces which parametrize Galois coverings of P^1 whose Galois group is an arbitrary Weyl group and the local monodromies are reflections. This generalizes a classical theorem due to Clebsch and Hurwitz. | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.