In this paper, by adopting a coherence-based probabilistic approach to default reasoning, we focus the study on the logical operation of quasi conjunction and the Goodman–Nguyen inclusion relation for conditional events. We recall that quasi conjunction is a basic notion for defining consistency of conditional knowledge bases. By deepening some results given in a previous paper we show that, given any finite family of conditional events F and any nonempty subset S of F, the family F p-entails the quasi conjunction C(S); then, given any conditional event E|H, we analyze the equivalence between p-entailment of E|H from F and p-entailment of E|H from C(S), where S is some nonempty subset of F We also illustrate some alternative theorems related with p-consistency and p-entailment. Finally, we deepen the study of the connections between the notions of p-entailment and inclusion relation by introducing for a pair (F,E|H) the (possibly empty) class K of the subsets S of F such that CS implies E|H. We show that the class K satisfies many properties; in particular K is additive and has a greatest element which can be determined by applying a suitable algorithm.
Gilio, A., Sanfilippo, G. (2013). Probabilistic entailment in the setting of coherence:The role of quasi conjunction and inclusion relation. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 54(4), 513-525 [10.1016/j.ijar.2012.11.001].
Probabilistic entailment in the setting of coherence:The role of quasi conjunction and inclusion relation
SANFILIPPO, Giuseppe
2013-01-01
Abstract
In this paper, by adopting a coherence-based probabilistic approach to default reasoning, we focus the study on the logical operation of quasi conjunction and the Goodman–Nguyen inclusion relation for conditional events. We recall that quasi conjunction is a basic notion for defining consistency of conditional knowledge bases. By deepening some results given in a previous paper we show that, given any finite family of conditional events F and any nonempty subset S of F, the family F p-entails the quasi conjunction C(S); then, given any conditional event E|H, we analyze the equivalence between p-entailment of E|H from F and p-entailment of E|H from C(S), where S is some nonempty subset of F We also illustrate some alternative theorems related with p-consistency and p-entailment. Finally, we deepen the study of the connections between the notions of p-entailment and inclusion relation by introducing for a pair (F,E|H) the (possibly empty) class K of the subsets S of F such that CS implies E|H. We show that the class K satisfies many properties; in particular K is additive and has a greatest element which can be determined by applying a suitable algorithm.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0888613X12001892-main.pdf
Solo gestori archvio
Descrizione: Articolo principale
Dimensione
489.1 kB
Formato
Adobe PDF
|
489.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S0888613X12001995-main-intro.pdf
Solo gestori archvio
Descrizione: Editorial
Dimensione
174.88 kB
Formato
Adobe PDF
|
174.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.