In virtue of a recent bound obtained in [P. Niroomand and F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra 39 (2011), 1293--1297], we classify all capable nilpotent Lie algebras of finite dimension possessing a derived subalgebra of dimension one. Indirectly, we find also a criterion for detecting noncapable Lie algebras. The final part contains a construction, which shows that there exist capable Lie algebras of arbitrary big corank (in the sense of Berkovich--Zhou).
Niroomand, P., Parvizi, M., Russo, F. (2013). Some criteria for detecting capable Lie algebras. JOURNAL OF ALGEBRA, 384, 36-44 [10.1016/j.jalgebra.2013.02.033].
Some criteria for detecting capable Lie algebras
RUSSO, Francesco
2013-01-01
Abstract
In virtue of a recent bound obtained in [P. Niroomand and F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra 39 (2011), 1293--1297], we classify all capable nilpotent Lie algebras of finite dimension possessing a derived subalgebra of dimension one. Indirectly, we find also a criterion for detecting noncapable Lie algebras. The final part contains a construction, which shows that there exist capable Lie algebras of arbitrary big corank (in the sense of Berkovich--Zhou).File | Dimensione | Formato | |
---|---|---|---|
Niroomand.pdf
Solo gestori archvio
Dimensione
133.06 kB
Formato
Adobe PDF
|
133.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.