We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where $∇u∈K$ , where $K⊂R^N$ is a Borel set containing the origin.

Ciraolo, G. (2014). A weak comparison principle for solutions of very degenerate elliptic equations. ANNALI DI MATEMATICA PURA ED APPLICATA, 193(5), 1485-1490 [10.1007/s10231-013-0339-5].

A weak comparison principle for solutions of very degenerate elliptic equations

CIRAOLO, Giulio
2014

Abstract

We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where $∇u∈K$ , where $K⊂R^N$ is a Borel set containing the origin.
Settore MAT/05 - Analisi Matematica
Ciraolo, G. (2014). A weak comparison principle for solutions of very degenerate elliptic equations. ANNALI DI MATEMATICA PURA ED APPLICATA, 193(5), 1485-1490 [10.1007/s10231-013-0339-5].
File in questo prodotto:
File Dimensione Formato  
CiraoloV-Annali-original.PDF

Solo gestori archvio

Dimensione 385.46 kB
Formato Adobe PDF
385.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/74892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact