In this paper some properties of continuous representable linear functionals on a quasi $*$-algebra are investigated. Moreover we give properties of operators acting on a Hilbert algebra, whose role will reveal to be crucial for proving a Radon-Nikodym type theorem for positive linear functionals.
Triolo, S., La Russa, C. (2013). Radon Nikodym theorem in quasi $*$-algebras. JOURNAL OF OPERATOR THEORY, Volume 69, Issue 2,(Volume 69, Issue 2), 423-433 [10.7900/jot.2011jan07.1950].
Radon Nikodym theorem in quasi $*$-algebras
TRIOLO, Salvatore;LA RUSSA, Caterina
2013-01-01
Abstract
In this paper some properties of continuous representable linear functionals on a quasi $*$-algebra are investigated. Moreover we give properties of operators acting on a Hilbert algebra, whose role will reveal to be crucial for proving a Radon-Nikodym type theorem for positive linear functionals.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Triolo la russa.pdf
Solo gestori archvio
Dimensione
189.84 kB
Formato
Adobe PDF
|
189.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.