In this paper, first we introduce the notion of a $G^m$-Meir-Keeler contractive mapping and establish some fixed point theorems for the $G^m$-Meir-Keeler contractive mapping in the setting of $G$-metric spaces. Further, we introduce the notion of a $G_c^m$-Meir-Keeler contractive mapping in the setting of $G$-cone metric spaces and obtain a fixed point result. Later, we introduce the notion of a $G$-$(\alpha,\psi)$-Meir-Keeler contractive mapping and prove some fixed point theorems for this class of mappings in the setting of $G$-metric spaces.

Hussain, N., Karapinar, E., Salimi, P., Vetro, P. (2013). Fixed point results for $G^m$-Meir-Keeler contractive and $G$-$(\alpha,\psi)$-Meir-Keeler contractive mappings. FIXED POINT THEORY AND APPLICATIONS, 2013, 1-14 [10.1186/1687-1812-2013-34].

Fixed point results for $G^m$-Meir-Keeler contractive and $G$-$(\alpha,\psi)$-Meir-Keeler contractive mappings

VETRO, Pasquale
2013-01-01

Abstract

In this paper, first we introduce the notion of a $G^m$-Meir-Keeler contractive mapping and establish some fixed point theorems for the $G^m$-Meir-Keeler contractive mapping in the setting of $G$-metric spaces. Further, we introduce the notion of a $G_c^m$-Meir-Keeler contractive mapping in the setting of $G$-cone metric spaces and obtain a fixed point result. Later, we introduce the notion of a $G$-$(\alpha,\psi)$-Meir-Keeler contractive mapping and prove some fixed point theorems for this class of mappings in the setting of $G$-metric spaces.
Settore MAT/05 - Analisi Matematica
http://www.fixedpointtheoryandapplications.com/content/2013/1/34
Hussain, N., Karapinar, E., Salimi, P., Vetro, P. (2013). Fixed point results for $G^m$-Meir-Keeler contractive and $G$-$(\alpha,\psi)$-Meir-Keeler contractive mappings. FIXED POINT THEORY AND APPLICATIONS, 2013, 1-14 [10.1186/1687-1812-2013-34].
File in questo prodotto:
File Dimensione Formato  
1687-1812-2013-34.pdf

Solo gestori archvio

Dimensione 298.64 kB
Formato Adobe PDF
298.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/71013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 45
social impact