Motivated by experience from computer science, Matthews (1994) introduced a nonzero self-distance called a partial metric. He also extended the Banach contraction principle to the setting of partial metric spaces. In this paper, we show that fixed point theorems on partial metric spaces (including the Matthews fixed point theorem) can be deduced from fixed point theorems on metric spaces. New fixed point theorems on metric spaces are established and analogous results on partial metric spaces are deduced.

Samet, B., Vetro, C., & Vetro, F. (2013). From metric spaces to partial metric spaces. FIXED POINT THEORY AND APPLICATIONS, 2013, 1-11 [10.1186/1687-1812-2013-5].

From metric spaces to partial metric spaces

VETRO, Calogero;VETRO, Francesca
2013

Abstract

Motivated by experience from computer science, Matthews (1994) introduced a nonzero self-distance called a partial metric. He also extended the Banach contraction principle to the setting of partial metric spaces. In this paper, we show that fixed point theorems on partial metric spaces (including the Matthews fixed point theorem) can be deduced from fixed point theorems on metric spaces. New fixed point theorems on metric spaces are established and analogous results on partial metric spaces are deduced.
Settore MAT/05 - Analisi Matematica
Samet, B., Vetro, C., & Vetro, F. (2013). From metric spaces to partial metric spaces. FIXED POINT THEORY AND APPLICATIONS, 2013, 1-11 [10.1186/1687-1812-2013-5].
File in questo prodotto:
File Dimensione Formato  
1687-1812-2013-5.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 218.43 kB
Formato Adobe PDF
218.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/69846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 38
social impact