In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our results, we deduce a characterization of partial metric 0-completeness in terms of fixed point theory. This result extends the Subrahmanyam characterization of metric completeness.

Paesano, D., Vetro, P. (2013). Common Fixed Points in a Partially Ordered Partial Metric Space. INTERNATIONAL JOURNAL OF ANALYSIS, 2013, 1-8 [10.1155/2013/428561].

Common Fixed Points in a Partially Ordered Partial Metric Space

VETRO, Pasquale
2013

Abstract

In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our results, we deduce a characterization of partial metric 0-completeness in terms of fixed point theory. This result extends the Subrahmanyam characterization of metric completeness.
Settore MAT/05 - Analisi Matematica
http://dx.doi.org/10.1155/2013/428561
Paesano, D., Vetro, P. (2013). Common Fixed Points in a Partially Ordered Partial Metric Space. INTERNATIONAL JOURNAL OF ANALYSIS, 2013, 1-8 [10.1155/2013/428561].
File in questo prodotto:
File Dimensione Formato  
428561.pdf

Solo gestori archvio

Descrizione: Article
Dimensione 669.45 kB
Formato Adobe PDF
669.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/69704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact