In this note we introduce the notion of (b, d)-geprofi sets and study their basic properties. These are sets of bd points in P4 whose projection from a general point to a hyperplane is a full intersection, i.e., the intersection of a curve of degree b and a surface of degree d. We show that such nontrivial sets exist if and only if b >= 4 and d >= 2. Somewhat surprisingly, for infinitely many values of b and d there exist such sets in linear general position. The note contains open questions and problems.

Chiantini, L., Farnik, Ł., Favacchio, G., Harbourne, B., Migliore, J., Szemberg, T., et al. (2025). Finite sets of points in P4 with special projection properties. GEOMETRIAE DEDICATA, 219(2) [10.1007/s10711-025-00990-y].

Finite sets of points in P4 with special projection properties

Favacchio G.;
2025-02-25

Abstract

In this note we introduce the notion of (b, d)-geprofi sets and study their basic properties. These are sets of bd points in P4 whose projection from a general point to a hyperplane is a full intersection, i.e., the intersection of a curve of degree b and a surface of degree d. We show that such nontrivial sets exist if and only if b >= 4 and d >= 2. Somewhat surprisingly, for infinitely many values of b and d there exist such sets in linear general position. The note contains open questions and problems.
25-feb-2025
Settore MATH-02/A - Algebra
Settore MATH-02/B - Geometria
Chiantini, L., Farnik, Ł., Favacchio, G., Harbourne, B., Migliore, J., Szemberg, T., et al. (2025). Finite sets of points in P4 with special projection properties. GEOMETRIAE DEDICATA, 219(2) [10.1007/s10711-025-00990-y].
File in questo prodotto:
File Dimensione Formato  
s10711-025-00990-y (1).pdf

Solo gestori archvio

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 515.07 kB
Formato Adobe PDF
515.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Finite sets of points in P4 with special projection properties.pdf

Solo gestori archvio

Descrizione: articolo
Tipologia: Pre-print
Dimensione 451.68 kB
Formato Adobe PDF
451.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/692858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact