Nuclear magnetic resonance (NMR) relaxometry has evolved from early theoretical insights into a dynamic and versatile analytical technique capable of probing molecular and ionic motion across diverse fields. Rooted in the foundational work by many different scientists (e.g., Bloch, Purcell, Torrey, Hahn, Bloembergen, Pound, and Solomon, just to name a few), relaxometry has progressed through pivotal advancements such as Redfield's theory and the development of time-domain (TD) and fast field-cycling (FFC) methodologies. While the former enables rapid, low-cost analysis of relaxation time distributions, widely applied in soft matter and quality control, the latter provides frequency-resolved nuclear magnetic resonance dispersion (NMRD) profiles that capture dynamic processes across multiple timescales, revealing deeper insights into molecular interactions in heterogeneous systems. Recent innovations in instrumentation have expanded the applicability of relaxometry. Moreover, its integration with modalities such as diffusimetry and imaging has opened new routes for spatially resolved and multimodal analyses. Applications now span materials science, biomedicine, and environmental studies. In polymers and porous media, relaxometry reveals segmental dynamics and surface interactions; in biological tissues, NMRD profiles differentiate healthy from pathological states, offering diagnostic potential. Emerging applications include contrast agent development, soil hydration analysis, microplastic detection, and wastewater monitoring. This paper offers a comprehensive overview of the field's historical trajectory, methodological advancements, and expanding application landscape. Emphasis is placed on the synergy between TD and FFC-NMR approaches and the ongoing transition toward portable, real-time, and multimodal relaxometric systems. NMR relaxometry is poised to become a mainstream tool in diagnostics, materials characterization, and environmental monitoring.

Conte Pellegrino, Faux David, Rollet Anne‐Laure, Chillura Martino Delia, Kruk Danuta, Ferrante Gianni, et al. (2025). NMR Relaxometry Across Time: From Early Insights to Emerging Directions. MAGNETIC RESONANCE IN CHEMISTRY, 1-10 [10.1002/mrc.70002].

NMR Relaxometry Across Time: From Early Insights to Emerging Directions

Conte Pellegrino
;
Chillura Martino Delia;Lo Meo Paolo
2025-06-19

Abstract

Nuclear magnetic resonance (NMR) relaxometry has evolved from early theoretical insights into a dynamic and versatile analytical technique capable of probing molecular and ionic motion across diverse fields. Rooted in the foundational work by many different scientists (e.g., Bloch, Purcell, Torrey, Hahn, Bloembergen, Pound, and Solomon, just to name a few), relaxometry has progressed through pivotal advancements such as Redfield's theory and the development of time-domain (TD) and fast field-cycling (FFC) methodologies. While the former enables rapid, low-cost analysis of relaxation time distributions, widely applied in soft matter and quality control, the latter provides frequency-resolved nuclear magnetic resonance dispersion (NMRD) profiles that capture dynamic processes across multiple timescales, revealing deeper insights into molecular interactions in heterogeneous systems. Recent innovations in instrumentation have expanded the applicability of relaxometry. Moreover, its integration with modalities such as diffusimetry and imaging has opened new routes for spatially resolved and multimodal analyses. Applications now span materials science, biomedicine, and environmental studies. In polymers and porous media, relaxometry reveals segmental dynamics and surface interactions; in biological tissues, NMRD profiles differentiate healthy from pathological states, offering diagnostic potential. Emerging applications include contrast agent development, soil hydration analysis, microplastic detection, and wastewater monitoring. This paper offers a comprehensive overview of the field's historical trajectory, methodological advancements, and expanding application landscape. Emphasis is placed on the synergy between TD and FFC-NMR approaches and the ongoing transition toward portable, real-time, and multimodal relaxometric systems. NMR relaxometry is poised to become a mainstream tool in diagnostics, materials characterization, and environmental monitoring.
19-giu-2025
Settore AGRI-06/B - Chimica agraria
Conte Pellegrino, Faux David, Rollet Anne‐Laure, Chillura Martino Delia, Kruk Danuta, Ferrante Gianni, et al. (2025). NMR Relaxometry Across Time: From Early Insights to Emerging Directions. MAGNETIC RESONANCE IN CHEMISTRY, 1-10 [10.1002/mrc.70002].
File in questo prodotto:
File Dimensione Formato  
2025 NMR.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 779 kB
Formato Adobe PDF
779 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/684226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact