The accurate clustering of cell subpopulations is a crucial aspect of single-cell RNA sequencing. The ability to correctly subdivide cell subpopulations hinges on the efficacy of unsupervised clustering. Despite the advancements and numerous adaptations of clustering algorithms, the correct clustering of cells remains a challenging endeavor that is dependent on the data in question and on the parameters selected for the clustering process. In this context, the present study aimed to predict the accuracy of clustering methods when varying different parameters by exploiting the intrinsic goodness metrics.

Sciaraffa, N., Gagliano, A., Augugliaro, L., Coronnello, C. (2025). Optimization of clustering parameters for single-cell RNA analysis using intrinsic goodness metrics. FRONTIERS IN BIOINFORMATICS, 5 [10.3389/fbinf.2025.1562410].

Optimization of clustering parameters for single-cell RNA analysis using intrinsic goodness metrics

Gagliano, Antonino;Augugliaro, Luigi;Coronnello, Claudia
2025-01-01

Abstract

The accurate clustering of cell subpopulations is a crucial aspect of single-cell RNA sequencing. The ability to correctly subdivide cell subpopulations hinges on the efficacy of unsupervised clustering. Despite the advancements and numerous adaptations of clustering algorithms, the correct clustering of cells remains a challenging endeavor that is dependent on the data in question and on the parameters selected for the clustering process. In this context, the present study aimed to predict the accuracy of clustering methods when varying different parameters by exploiting the intrinsic goodness metrics.
2025
Settore STAT-01/A - Statistica
Sciaraffa, N., Gagliano, A., Augugliaro, L., Coronnello, C. (2025). Optimization of clustering parameters for single-cell RNA analysis using intrinsic goodness metrics. FRONTIERS IN BIOINFORMATICS, 5 [10.3389/fbinf.2025.1562410].
File in questo prodotto:
File Dimensione Formato  
fbinf-1-1562410.pdf

accesso aperto

Descrizione: pdf lavoro pubblicato
Tipologia: Versione Editoriale
Dimensione 75.5 MB
Formato Adobe PDF
75.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/683971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact