The article provides a very informal discussion about translation bounds in 2-dimensional multimaterial composites. Because notations, definitions and assumptions are not properly defined, and because of several errors and misprints (e.g. the definition of the energy density W(χ,e) after formula 3 at p.77), the discussion is very confusing and can be only partially clarified by referring to the bibliography or to other articles in the field.

Valeria Ricci (2025). Cherkaev, Andrej. Structure of fields in extremal 2D conducting multimaterial composites. (English) Zbl 07974774 Willot, François (ed.) et al., Continuum models and discrete systems, CMDS-14. Proceedings of the 14th international symposium, Paris, France, June 26–30, 2023. Cham: Springer. Springer Proc. Math. Stat. 457, 75-88 (2024). EXCERPTS FROM ZENTRALBLATT MATH.

Cherkaev, Andrej. Structure of fields in extremal 2D conducting multimaterial composites. (English) Zbl 07974774 Willot, François (ed.) et al., Continuum models and discrete systems, CMDS-14. Proceedings of the 14th international symposium, Paris, France, June 26–30, 2023. Cham: Springer. Springer Proc. Math. Stat. 457, 75-88 (2024).

Valeria Ricci
2025-01-01

Abstract

The article provides a very informal discussion about translation bounds in 2-dimensional multimaterial composites. Because notations, definitions and assumptions are not properly defined, and because of several errors and misprints (e.g. the definition of the energy density W(χ,e) after formula 3 at p.77), the discussion is very confusing and can be only partially clarified by referring to the bibliography or to other articles in the field.
2025
Valeria Ricci (2025). Cherkaev, Andrej. Structure of fields in extremal 2D conducting multimaterial composites. (English) Zbl 07974774 Willot, François (ed.) et al., Continuum models and discrete systems, CMDS-14. Proceedings of the 14th international symposium, Paris, France, June 26–30, 2023. Cham: Springer. Springer Proc. Math. Stat. 457, 75-88 (2024). EXCERPTS FROM ZENTRALBLATT MATH.
File in questo prodotto:
File Dimensione Formato  
07974774.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 242.2 kB
Formato Adobe PDF
242.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/683626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact