A notion of Lr-δ-variation of a function in Lr which plays an essential role in the theory of the Henstock-Kurzweil integral for functions in Lr (HKr-integral) is studied. We obtain an improved, in fact the best possible, estimate from below for this variation via the classical variation. We show that the class of functions having a finite Lr-δ-variation on an interval coincides with the class of functions of bounded variation on this interval. As a by-product of the results of the paper we obtain a new proof of the uniqueness of the HKr-integral.

Musial, P., Skvortsov, V.A., Sworowski, P., Tulone, F. (2025). An Optimal Estimate of the $L^r$-$\delta$-Variation. REAL ANALYSIS EXCHANGE [10.14321/realanalexch.1737532213].

An Optimal Estimate of the $L^r$-$\delta$-Variation

Tulone, Francesco
2025-01-01

Abstract

A notion of Lr-δ-variation of a function in Lr which plays an essential role in the theory of the Henstock-Kurzweil integral for functions in Lr (HKr-integral) is studied. We obtain an improved, in fact the best possible, estimate from below for this variation via the classical variation. We show that the class of functions having a finite Lr-δ-variation on an interval coincides with the class of functions of bounded variation on this interval. As a by-product of the results of the paper we obtain a new proof of the uniqueness of the HKr-integral.
2025
Settore MATH-03/A - Analisi matematica
Musial, P., Skvortsov, V.A., Sworowski, P., Tulone, F. (2025). An Optimal Estimate of the $L^r$-$\delta$-Variation. REAL ANALYSIS EXCHANGE [10.14321/realanalexch.1737532213].
File in questo prodotto:
File Dimensione Formato  
RAEx 250122 - Musial.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 369.1 kB
Formato Adobe PDF
369.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/682107
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact