This paper studies a class of solvable Leibniz algebras, which is a generalisation of Lie algebras. Specifically, we examine 2-step solvable Leibniz algebras that possess a 2-dimensional abelian derived subalgebra. Leveraging previous findings, we explore the left action vector spaces and establish a lower bound on the dimension of the algebra's center in order to classify such indecomposable solvable Leibniz algebras. The main result states that such a Leibniz algebra either has a dimension at most 7 or is described by a bilinear form.

Di Bartolo, A., La Rosa, G. (2025). On a class of two-step solvable Leibniz algebras. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 35(5), 733-758 [10.1142/s0218196725500249].

On a class of two-step solvable Leibniz algebras

Di Bartolo, Alfonso
;
La Rosa, Gianmarco
2025-07-01

Abstract

This paper studies a class of solvable Leibniz algebras, which is a generalisation of Lie algebras. Specifically, we examine 2-step solvable Leibniz algebras that possess a 2-dimensional abelian derived subalgebra. Leveraging previous findings, we explore the left action vector spaces and establish a lower bound on the dimension of the algebra's center in order to classify such indecomposable solvable Leibniz algebras. The main result states that such a Leibniz algebra either has a dimension at most 7 or is described by a bilinear form.
1-lug-2025
Settore MATH-02/B - Geometria
Settore MATH-02/A - Algebra
Di Bartolo, A., La Rosa, G. (2025). On a class of two-step solvable Leibniz algebras. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 35(5), 733-758 [10.1142/s0218196725500249].
File in questo prodotto:
File Dimensione Formato  
S0218196725500249.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 489.99 kB
Formato Adobe PDF
489.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/682093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact