This paper studies a class of solvable Leibniz algebras, which is a generalisation of Lie algebras. Specifically, we examine 2-step solvable Leibniz algebras that possess a 2-dimensional abelian derived subalgebra. Leveraging previous findings, we explore the left action vector spaces and establish a lower bound on the dimension of the algebra's center in order to classify such indecomposable solvable Leibniz algebras. The main result states that such a Leibniz algebra either has a dimension at most 7 or is described by a bilinear form.
Di Bartolo, A., La Rosa, G. (2025). On a class of two-step solvable Leibniz algebras. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 35(5), 733-758 [10.1142/s0218196725500249].
On a class of two-step solvable Leibniz algebras
Di Bartolo, Alfonso
;La Rosa, Gianmarco
2025-07-01
Abstract
This paper studies a class of solvable Leibniz algebras, which is a generalisation of Lie algebras. Specifically, we examine 2-step solvable Leibniz algebras that possess a 2-dimensional abelian derived subalgebra. Leveraging previous findings, we explore the left action vector spaces and establish a lower bound on the dimension of the algebra's center in order to classify such indecomposable solvable Leibniz algebras. The main result states that such a Leibniz algebra either has a dimension at most 7 or is described by a bilinear form.| File | Dimensione | Formato | |
|---|---|---|---|
|
S0218196725500249.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
489.99 kB
Formato
Adobe PDF
|
489.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


