This article concerns the operators T E L(H), defined on a separable Hilbert space H, that belong to the norm closure HC(H) in L(H) of the set HC(H) of all hypercyclic operators. Starting from a Herrero's characterization of these operators [11] we deduce some criteria that are very useful in many concrete cases. We also show that if T E L(H) is invertible then T E HC(H) if and only if T-1 E HC(H). This result extends to HC(H) a known result of Kitai and Herrero established for hypercyclic operators, ([13]). (c) 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Aiena P., Burderi F., Triolo S. (2025). Limits of hypercyclic operators on Hilbert spaces. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 548(2) [10.1016/j.jmaa.2025.129484].

Limits of hypercyclic operators on Hilbert spaces

Aiena P.;Burderi F.;Triolo S.
2025-08-15

Abstract

This article concerns the operators T E L(H), defined on a separable Hilbert space H, that belong to the norm closure HC(H) in L(H) of the set HC(H) of all hypercyclic operators. Starting from a Herrero's characterization of these operators [11] we deduce some criteria that are very useful in many concrete cases. We also show that if T E L(H) is invertible then T E HC(H) if and only if T-1 E HC(H). This result extends to HC(H) a known result of Kitai and Herrero established for hypercyclic operators, ([13]). (c) 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
15-ago-2025
Settore MATH-03/A - Analisi matematica
Aiena P., Burderi F., Triolo S. (2025). Limits of hypercyclic operators on Hilbert spaces. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 548(2) [10.1016/j.jmaa.2025.129484].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X25002653-main.pdf

accesso aperto

Descrizione: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Tipologia: Versione Editoriale
Dimensione 415.69 kB
Formato Adobe PDF
415.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/678024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact