We consider a particular class of sesquilinear forms on a Banach quasi *-algebra (A[parallel to.parallel to],A0[parallel to.parallel to 0])$({\cal A}[\Vert .\Vert],{\cal A}_0[\Vert .\Vert _0])$ that we call eigenstates of an element a is an element of A$a\in {\cal A}$, and we deduce some of their properties. We further apply our definition to a family of ladder elements, that is, elements of A${\cal A}$ obeying certain commutation relations physically motivated, and we discuss several results, including orthogonality and biorthogonality of the forms, via Gelfand-Naimark-Segal (GNS) representation.

Bagarello F., Inoue H., Triolo S. (2025). Sesquilinear forms as eigenvectors in quasi *-algebras, with an application to ladder elements. MATHEMATISCHE NACHRICHTEN, 298(3), 1062-1075 [10.1002/mana.202400291].

Sesquilinear forms as eigenvectors in quasi *-algebras, with an application to ladder elements

Bagarello F.;Inoue H.;Triolo S.
2025-01-01

Abstract

We consider a particular class of sesquilinear forms on a Banach quasi *-algebra (A[parallel to.parallel to],A0[parallel to.parallel to 0])$({\cal A}[\Vert .\Vert],{\cal A}_0[\Vert .\Vert _0])$ that we call eigenstates of an element a is an element of A$a\in {\cal A}$, and we deduce some of their properties. We further apply our definition to a family of ladder elements, that is, elements of A${\cal A}$ obeying certain commutation relations physically motivated, and we discuss several results, including orthogonality and biorthogonality of the forms, via Gelfand-Naimark-Segal (GNS) representation.
2025
Bagarello F., Inoue H., Triolo S. (2025). Sesquilinear forms as eigenvectors in quasi *-algebras, with an application to ladder elements. MATHEMATISCHE NACHRICHTEN, 298(3), 1062-1075 [10.1002/mana.202400291].
File in questo prodotto:
File Dimensione Formato  
Mathematische Nachrichten - 2025 - Bagarello - Sesquilinear forms as eigenvectors in quasi ‐algebras with an application (1).pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 222.38 kB
Formato Adobe PDF
222.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/678023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact