We study the stability of some model problems in Celestial Mechanics, focusing on the dynamics around synchronous resonances, namely 1:1 commensurabilities among the main characteristic frequencies. In particular, we illustrate the following examples: the Earth's satellites dynamics, orbital asteroids, the rotational dynamics. Within such model problems we analyze, respectively, the stability of the Zeipel-Lidov-Kozai integral, the triangular Lagrangian points, the spin orbit resonance. Stability results are obtained through perturbative methods, precisely implementation of normal forms, Nekhoroshev-type estimates or KAM theory.

Celletti A., De Blasi I., Di Ruzza S. (2025). Perturbative methods and synchronous resonances in Celestial Mechanics. APPLIED MATHEMATICAL MODELLING, 143 [10.1016/j.apm.2025.116040].

Perturbative methods and synchronous resonances in Celestial Mechanics

Di Ruzza S.
2025-01-01

Abstract

We study the stability of some model problems in Celestial Mechanics, focusing on the dynamics around synchronous resonances, namely 1:1 commensurabilities among the main characteristic frequencies. In particular, we illustrate the following examples: the Earth's satellites dynamics, orbital asteroids, the rotational dynamics. Within such model problems we analyze, respectively, the stability of the Zeipel-Lidov-Kozai integral, the triangular Lagrangian points, the spin orbit resonance. Stability results are obtained through perturbative methods, precisely implementation of normal forms, Nekhoroshev-type estimates or KAM theory.
2025
Settore MATH-04/A - Fisica matematica
Celletti A., De Blasi I., Di Ruzza S. (2025). Perturbative methods and synchronous resonances in Celestial Mechanics. APPLIED MATHEMATICAL MODELLING, 143 [10.1016/j.apm.2025.116040].
File in questo prodotto:
File Dimensione Formato  
20CDD2025_AMM.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/676884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact