Congenital diaphragmatic hernia (CDH) has high morbidity and mortality rates. This study aimed to develop a machine learning (ML) algorithm to predict outcomes based on prenatal and early postnatal data. This retrospective observational cohort study involved infants with left-sided CDH, born from 2012 to 2020. We analyzed clinical and imaging data using three classification algorithms: XGBoost, Support Vector Machine, and K-Nearest Neighbors. Medical records of 165 pregnant women with CDH fetal diagnosis were reviewed. According to inclusion criteria, 50 infants with isolated left-sided CDH were enrolled. The mean o/eLHR was 37.32%, and the average gestational age at delivery was 36.5 weeks. Among these infants, 26 (52%) had severe persistent neonatal pulmonary hypertension (PPHN), while 24 (48%) had moderate or mild form; 37 survived (74%), and 13 did not (26%). The XGBoost model achieved 88% accuracy and 95% sensitivity for predicting mortality using ten features and 82% accuracy for PPHN severity with 14 features. The area under the ROC curve was 0.87 for mortality and 0.82 for PPHN severity. (ML) algorithm to predict outcomes based on prenatal and early postnatal data. This retrospective observational cohort study involved infants with left-sided CDH, born from 2012 to 2020. We analyzed clinical and imaging data using three classification algorithms: XGBoost, Support Vector Machine, and K-Nearest Neighbors. Medical records of 165 pregnant women with CDH fetal diagnosis were reviewed. According to inclusion criteria, 50 infants with isolated left-sided CDH were enrolled. The mean o/eLHR was 37.32%, and the average gestational age at delivery was 36.5 weeks. Among these infants, 26 (52%) had severe persistent neonatal pulmonary hypertension (PPHN), while 24 (48%) had moderate or mild form; 37 survived (74%), and 13 did not (26%). The XGBoost model achieved 88% accuracy and 95% sensitivity for predicting mortality using ten features and 82% accuracy for PPHN severity with 14 features. The area under the ROC curve was 0.87 for mortality and 0.82 for PPHN severity. Conclusion: ML models show promise in predicting CDH outcomes and supporting clinical decisions. Future research should focus on more extensive studies to refine these algorithms and improve care management.

Conte, L., Amodeo, I., De Nunzio, G., Raffaeli, G., Borzani, I., Persico, N., et al. (2025). A machine learning approach to predict mortality and neonatal persistent pulmonary hypertension in newborns with congenital diaphragmatic hernia. A retrospective observational cohort study. EUROPEAN JOURNAL OF PEDIATRICS, 184(4) [10.1007/s00431-025-06073-0].

A machine learning approach to predict mortality and neonatal persistent pulmonary hypertension in newborns with congenital diaphragmatic hernia. A retrospective observational cohort study

Conte, Luana
;
Cascio, Donato
Co-ultimo
;
2025-03-11

Abstract

Congenital diaphragmatic hernia (CDH) has high morbidity and mortality rates. This study aimed to develop a machine learning (ML) algorithm to predict outcomes based on prenatal and early postnatal data. This retrospective observational cohort study involved infants with left-sided CDH, born from 2012 to 2020. We analyzed clinical and imaging data using three classification algorithms: XGBoost, Support Vector Machine, and K-Nearest Neighbors. Medical records of 165 pregnant women with CDH fetal diagnosis were reviewed. According to inclusion criteria, 50 infants with isolated left-sided CDH were enrolled. The mean o/eLHR was 37.32%, and the average gestational age at delivery was 36.5 weeks. Among these infants, 26 (52%) had severe persistent neonatal pulmonary hypertension (PPHN), while 24 (48%) had moderate or mild form; 37 survived (74%), and 13 did not (26%). The XGBoost model achieved 88% accuracy and 95% sensitivity for predicting mortality using ten features and 82% accuracy for PPHN severity with 14 features. The area under the ROC curve was 0.87 for mortality and 0.82 for PPHN severity. (ML) algorithm to predict outcomes based on prenatal and early postnatal data. This retrospective observational cohort study involved infants with left-sided CDH, born from 2012 to 2020. We analyzed clinical and imaging data using three classification algorithms: XGBoost, Support Vector Machine, and K-Nearest Neighbors. Medical records of 165 pregnant women with CDH fetal diagnosis were reviewed. According to inclusion criteria, 50 infants with isolated left-sided CDH were enrolled. The mean o/eLHR was 37.32%, and the average gestational age at delivery was 36.5 weeks. Among these infants, 26 (52%) had severe persistent neonatal pulmonary hypertension (PPHN), while 24 (48%) had moderate or mild form; 37 survived (74%), and 13 did not (26%). The XGBoost model achieved 88% accuracy and 95% sensitivity for predicting mortality using ten features and 82% accuracy for PPHN severity with 14 features. The area under the ROC curve was 0.87 for mortality and 0.82 for PPHN severity. Conclusion: ML models show promise in predicting CDH outcomes and supporting clinical decisions. Future research should focus on more extensive studies to refine these algorithms and improve care management.
11-mar-2025
Settore PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali
Conte, L., Amodeo, I., De Nunzio, G., Raffaeli, G., Borzani, I., Persico, N., et al. (2025). A machine learning approach to predict mortality and neonatal persistent pulmonary hypertension in newborns with congenital diaphragmatic hernia. A retrospective observational cohort study. EUROPEAN JOURNAL OF PEDIATRICS, 184(4) [10.1007/s00431-025-06073-0].
File in questo prodotto:
File Dimensione Formato  
s00431-025-06073-0.pdf

Solo gestori archvio

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/674706
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact