Quantum extreme learning machines (QELMs) leverage untrained quantum dynamics to efficiently process information encoded in input quantum states, avoiding the high computational cost of training more complicated nonlinear models. On the other hand, quantum information scrambling (QIS) quantifies how the spread of quantum information into correlations makes it irretrievable from local measurements. Here, we explore the tight relation between QIS and the predictive power of QELMs. In particular, we show efficient state estimation is possible even beyond the scrambling time, for many different types of dynamics — in fact, we show that in all the cases we studied, the reconstruction efficiency at long interaction times matches the optimal one offered by random global unitary dynamics. These results offer promising venues for robust experimental QELM-based state estimation protocols, as well as providing novel insights into the nature of QIS from a state estimation perspective.

Marco Vetrano, Gabriele Lo Monaco, Luca Innocenti, Salvatore Lorenzo, Massimo Palma (2025). State estimation with quantum extreme learning machine beyond scrambling time. NPJ QUANTUM INFORMATION, 11 [10.1038/s41534-024-00927-5].

State estimation with quantum extreme learning machine beyond scrambling time

Marco Vetrano;Gabriele Lo Monaco;Luca Innocenti;Salvatore Lorenzo;Massimo Palma
2025-02-03

Abstract

Quantum extreme learning machines (QELMs) leverage untrained quantum dynamics to efficiently process information encoded in input quantum states, avoiding the high computational cost of training more complicated nonlinear models. On the other hand, quantum information scrambling (QIS) quantifies how the spread of quantum information into correlations makes it irretrievable from local measurements. Here, we explore the tight relation between QIS and the predictive power of QELMs. In particular, we show efficient state estimation is possible even beyond the scrambling time, for many different types of dynamics — in fact, we show that in all the cases we studied, the reconstruction efficiency at long interaction times matches the optimal one offered by random global unitary dynamics. These results offer promising venues for robust experimental QELM-based state estimation protocols, as well as providing novel insights into the nature of QIS from a state estimation perspective.
3-feb-2025
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Marco Vetrano, Gabriele Lo Monaco, Luca Innocenti, Salvatore Lorenzo, Massimo Palma (2025). State estimation with quantum extreme learning machine beyond scrambling time. NPJ QUANTUM INFORMATION, 11 [10.1038/s41534-024-00927-5].
File in questo prodotto:
File Dimensione Formato  
PublicationAgreement.pdf

Solo gestori archvio

Descrizione: Publication Agreement con la rivista
Tipologia: Contratto con l'editore (ATTENZIONE: NON TRASFERIRE A SITO DOCENTE)
Dimensione 67.08 kB
Formato Adobe PDF
67.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s41534-024-00927-5.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri
2409.06782v2.pdf

accesso aperto

Descrizione: articolo
Tipologia: Pre-print
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/674610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact