We consider a nonlinear Neumann problem driven by the p-Laplacian with a concave parametric reaction term and an asymptotically linear perturbation. We prove a multiplicity theorem producing five non- trivial solutions all with sign information when the parameter is small. For the semilinear case (p = 2) we produce six solutions, but we are unable to determine the sign of the sixth solution. Our approach uses critical point theory, truncation and comparison techniques, and Morse theory.
Candito, P., D'Aguì, G., Papageorgiou, N.S. (2016). Nonlinear noncoercive Neumann problems with a reaction concave near the origin. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 47(1), 289-317 [10.12775/tmna.2016.007].
Nonlinear noncoercive Neumann problems with a reaction concave near the origin
Candito, Pasquale
;
2016-01-01
Abstract
We consider a nonlinear Neumann problem driven by the p-Laplacian with a concave parametric reaction term and an asymptotically linear perturbation. We prove a multiplicity theorem producing five non- trivial solutions all with sign information when the parameter is small. For the semilinear case (p = 2) we produce six solutions, but we are unable to determine the sign of the sixth solution. Our approach uses critical point theory, truncation and comparison techniques, and Morse theory.File | Dimensione | Formato | |
---|---|---|---|
42-CanditoDaguiPapageorgiou_2016_TMNA-nonlinear_editor.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
502.74 kB
Formato
Adobe PDF
|
502.74 kB | Adobe PDF | Visualizza/Apri |
v47n1-15.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
405.31 kB
Formato
Adobe PDF
|
405.31 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.