We consider a nonlinear Neumann problem driven by the p-Laplacian with a concave parametric reaction term and an asymptotically linear perturbation. We prove a multiplicity theorem producing five non- trivial solutions all with sign information when the parameter is small. For the semilinear case (p = 2) we produce six solutions, but we are unable to determine the sign of the sixth solution. Our approach uses critical point theory, truncation and comparison techniques, and Morse theory.

Candito, P., D'Aguì, G., Papageorgiou, N.S. (2016). Nonlinear noncoercive Neumann problems with a reaction concave near the origin. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 47(1), 289-317 [10.12775/tmna.2016.007].

Nonlinear noncoercive Neumann problems with a reaction concave near the origin

Candito, Pasquale
;
2016-01-01

Abstract

We consider a nonlinear Neumann problem driven by the p-Laplacian with a concave parametric reaction term and an asymptotically linear perturbation. We prove a multiplicity theorem producing five non- trivial solutions all with sign information when the parameter is small. For the semilinear case (p = 2) we produce six solutions, but we are unable to determine the sign of the sixth solution. Our approach uses critical point theory, truncation and comparison techniques, and Morse theory.
2016
Settore MATH-03/A - Analisi matematica
Candito, P., D'Aguì, G., Papageorgiou, N.S. (2016). Nonlinear noncoercive Neumann problems with a reaction concave near the origin. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 47(1), 289-317 [10.12775/tmna.2016.007].
File in questo prodotto:
File Dimensione Formato  
42-CanditoDaguiPapageorgiou_2016_TMNA-nonlinear_editor.pdf

accesso aperto

Tipologia: Post-print
Dimensione 502.74 kB
Formato Adobe PDF
502.74 kB Adobe PDF Visualizza/Apri
v47n1-15.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 405.31 kB
Formato Adobe PDF
405.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/672924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact