We consider the two-dimensional (2D) Magneto-HydroDynamics (MHD) equations describing the evolution of a viscous incompressible electrically conducting fluid. In this paper, adopting the vorticity-current formulation and assuming that the initial fluid vorticity and magnetic current are in L1(ℝ2), we prove the local in-time existence and regularity of the solutions.
Sammartino Marco, Schonbek Maria Elena, Sciacca Vincenzo (2024). Dissipative 2D MHD equations with L^1 vorticity and magnetic current. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 21(3), 791-810 [10.1142/S0219891624400083].
Dissipative 2D MHD equations with L^1 vorticity and magnetic current
Sammartino Marco;Sciacca Vincenzo
2024-09-01
Abstract
We consider the two-dimensional (2D) Magneto-HydroDynamics (MHD) equations describing the evolution of a viscous incompressible electrically conducting fluid. In this paper, adopting the vorticity-current formulation and assuming that the initial fluid vorticity and magnetic current are in L1(ℝ2), we prove the local in-time existence and regularity of the solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
postprint_jhde_2024.pdf
embargo fino al 01/09/2025
Tipologia:
Post-print
Dimensione
301.69 kB
Formato
Adobe PDF
|
301.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
article.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
4.66 MB
Formato
Adobe PDF
|
4.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.