Villarrica volcano, in the southern Andes, is a composite mafic volcano whose persistent open-vent activity is punctuated by frequent Strombolian/Hawaiian eruptions and, more rarely, by more energetic (sub-Plinian) events. Here, we investigate the volatile composition of the parental melts that sustain this activity, and the conditions of pre-eruptive magma storage, by characterizing the composition of olivine-hosted melt and fluid inclusions. We concentrate on inclusions entrapped in minerals from pyroclastic materials erupted from both Villarrica summit and from its flank Minor Eruptive Centers (MECs) post the 14.5–13.5 kyr caldera collapse event that formed the Licán ignimbrite. Our micro-FTIR and SIMS measurements indicate that the Pucón eruption records the highest volatile contents, with 6.0 wt% H2O, >1500 ppm CO2, 1330 ppm S, 1556 ppm Cl, and 2055 ppm F. These volatile contents imply a volatile-saturated magma originating from a depth of 14.4 to 17 km below Villarrica. Results for other flank eruptions highlight a similarly deep (17–21 km depth) source for basaltic CO2-rich mafic magmas erupted at regional MECs (Los Nevados, Caburgua). Melt inclusion results also reveal that deep rising mafic magma batches, when temporarily stored at 1–5 km depth, produce the more differentiated and degassed magma batches that sustain the decadal-old persistent effusive-explosive eruptive activity at Villarrica. Helium isotope ratios (3He/4He; Rc/Ra when corrected for atmosphere) measured in bulk noble gases from olivines (Fo75–88) indicate that the parental magmatic fluid signature (Rc/Ra = 6.7–7.6; CO2/3He = 4.7–7.5E+08) is only recorded during central paroxysmal sub-Plinian eruption, and that this primitive gas signal is diluted in lateral MECs (Rc/Ra < 6.5; CO2/3He = 1.4 × 10+9–3.1E+10).

Robidoux P., Moussallam Y., Rose-Koga E.F., Rizzo A.L., Georgeais G., Nogueira Lages J., et al. (2024). New insights from plumbing system below composite mafic volcanoes: Post-glacial volatile contents and magmatic fluids from Villarrica magmas. LITHOS, 488-489 [10.1016/j.lithos.2024.107786].

New insights from plumbing system below composite mafic volcanoes: Post-glacial volatile contents and magmatic fluids from Villarrica magmas

Nogueira Lages J.;Aiuppa A.
2024-01-01

Abstract

Villarrica volcano, in the southern Andes, is a composite mafic volcano whose persistent open-vent activity is punctuated by frequent Strombolian/Hawaiian eruptions and, more rarely, by more energetic (sub-Plinian) events. Here, we investigate the volatile composition of the parental melts that sustain this activity, and the conditions of pre-eruptive magma storage, by characterizing the composition of olivine-hosted melt and fluid inclusions. We concentrate on inclusions entrapped in minerals from pyroclastic materials erupted from both Villarrica summit and from its flank Minor Eruptive Centers (MECs) post the 14.5–13.5 kyr caldera collapse event that formed the Licán ignimbrite. Our micro-FTIR and SIMS measurements indicate that the Pucón eruption records the highest volatile contents, with 6.0 wt% H2O, >1500 ppm CO2, 1330 ppm S, 1556 ppm Cl, and 2055 ppm F. These volatile contents imply a volatile-saturated magma originating from a depth of 14.4 to 17 km below Villarrica. Results for other flank eruptions highlight a similarly deep (17–21 km depth) source for basaltic CO2-rich mafic magmas erupted at regional MECs (Los Nevados, Caburgua). Melt inclusion results also reveal that deep rising mafic magma batches, when temporarily stored at 1–5 km depth, produce the more differentiated and degassed magma batches that sustain the decadal-old persistent effusive-explosive eruptive activity at Villarrica. Helium isotope ratios (3He/4He; Rc/Ra when corrected for atmosphere) measured in bulk noble gases from olivines (Fo75–88) indicate that the parental magmatic fluid signature (Rc/Ra = 6.7–7.6; CO2/3He = 4.7–7.5E+08) is only recorded during central paroxysmal sub-Plinian eruption, and that this primitive gas signal is diluted in lateral MECs (Rc/Ra < 6.5; CO2/3He = 1.4 × 10+9–3.1E+10).
2024
Robidoux P., Moussallam Y., Rose-Koga E.F., Rizzo A.L., Georgeais G., Nogueira Lages J., et al. (2024). New insights from plumbing system below composite mafic volcanoes: Post-glacial volatile contents and magmatic fluids from Villarrica magmas. LITHOS, 488-489 [10.1016/j.lithos.2024.107786].
File in questo prodotto:
File Dimensione Formato  
Robidouxetal2024.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 9.88 MB
Formato Adobe PDF
9.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/670606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact