In this note, we consider a Robin-type traction problem for a linearly elastic body occupying an infinite periodically perforated domain. After proving the uniqueness of the solution we use periodic elastic layer potentials to show that the solution can be written as the sum of a single layer potential, a constant function and a linear function of the space variable. The density of the periodic single layer potential and the constant are identified as the unique solutions of a certain integral equation.

Dalla Riva M., Mishuris G., Musolino P. (2022). INTEGRAL EQUATION METHOD FOR A ROBIN-TYPE TRACTION PROBLEM IN A PERIODIC DOMAIN. TRANSACTIONS OF A. RAZMADZE MATHEMATICAL INSTITUTE, 176(3), 349-360.

INTEGRAL EQUATION METHOD FOR A ROBIN-TYPE TRACTION PROBLEM IN A PERIODIC DOMAIN

Dalla Riva M.;
2022-01-01

Abstract

In this note, we consider a Robin-type traction problem for a linearly elastic body occupying an infinite periodically perforated domain. After proving the uniqueness of the solution we use periodic elastic layer potentials to show that the solution can be written as the sum of a single layer potential, a constant function and a linear function of the space variable. The density of the periodic single layer potential and the constant are identified as the unique solutions of a certain integral equation.
2022
Dalla Riva M., Mishuris G., Musolino P. (2022). INTEGRAL EQUATION METHOD FOR A ROBIN-TYPE TRACTION PROBLEM IN A PERIODIC DOMAIN. TRANSACTIONS OF A. RAZMADZE MATHEMATICAL INSTITUTE, 176(3), 349-360.
File in questo prodotto:
File Dimensione Formato  
2208.02702v1.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 224.86 kB
Formato Adobe PDF
224.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/665365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact