Background. Lipid–polymer hybrid nanoparticles (LPHNPs) offer a promising method for delivering methylprednisolone (MePD) to treat lung inflammation, addressing aggregation issues seen with polymer-only formulations. Objectives. This study aimed to develop LPHNPs for MePD delivery, assessing their physicochemical properties, drug loading, cytocompatibility, and release profiles, ultimately enabling inhalable microparticle-based powder. Methods. The nanoparticles were formulated using ,-poly(N-2-hydroxyethyl)-DL-aspartamide-g-Rhodamine B-g-poly(lactic acid) (PHEA-g-RhB-g-PLA) and phospholipids DPPC, DOTAP, and DSPE-PEG2000 in a 45:30:25 weight ratio. Their size, redispersion after freeze-drying, drug loading (DL%), and controlled release were evaluated. Cytocompatibility was assessed on 16-HBE cell lines, measuring anti-inflammatory effects via IL-6 and IL-8 levels. Spray drying was optimized to produce microparticles using mannitol (MAN), leucine (LEU), and N-acetylcysteine (NAC). Results. The nanoparticles had a size of 186 nm and a DL% of 2.9% for MePD. They showed good cytocompatibility, significantly reducing IL-6 and IL-8 levels. Spray drying yielded microparticles with a fine particle fraction (FPF) of 62.3% and a mass median aerodynamic diameter (MMAD) of 3.9 m. Inclusion of LPHNPs@MePD (0.25% w/v) resulted in FPF and MMAD values of 56.7% and 4.4 m. In conclusion, this study described the production of novel inhalable powders as carriers for MePD-loaded nanostructures with favorable physicochemical properties, cytocompatibility, and promising aerosol performance, indicating their potential as an effective inhalable therapy for lung inflammation with corticosteroids, especially for treating chronic diseases.
Scialabba, C., Craparo, E.F., Bonsignore, S., Cabibbo, M., Cavallaro, G. (2024). Lipid–Polymer Hybrid Nanoparticles in Microparticle-Based Powder: Evaluating the Potential of Methylprednisolone Delivery for Future Lung Disease Treatment via Inhalation. PHARMACEUTICS, 16(11) [10.3390/pharmaceutics16111454].
Lipid–Polymer Hybrid Nanoparticles in Microparticle-Based Powder: Evaluating the Potential of Methylprednisolone Delivery for Future Lung Disease Treatment via Inhalation
Scialabba, Cinzia;Craparo, Emanuela Fabiola
;Bonsignore, Sofia;Cabibbo, Marta;Cavallaro, Gennara
2024-01-01
Abstract
Background. Lipid–polymer hybrid nanoparticles (LPHNPs) offer a promising method for delivering methylprednisolone (MePD) to treat lung inflammation, addressing aggregation issues seen with polymer-only formulations. Objectives. This study aimed to develop LPHNPs for MePD delivery, assessing their physicochemical properties, drug loading, cytocompatibility, and release profiles, ultimately enabling inhalable microparticle-based powder. Methods. The nanoparticles were formulated using ,-poly(N-2-hydroxyethyl)-DL-aspartamide-g-Rhodamine B-g-poly(lactic acid) (PHEA-g-RhB-g-PLA) and phospholipids DPPC, DOTAP, and DSPE-PEG2000 in a 45:30:25 weight ratio. Their size, redispersion after freeze-drying, drug loading (DL%), and controlled release were evaluated. Cytocompatibility was assessed on 16-HBE cell lines, measuring anti-inflammatory effects via IL-6 and IL-8 levels. Spray drying was optimized to produce microparticles using mannitol (MAN), leucine (LEU), and N-acetylcysteine (NAC). Results. The nanoparticles had a size of 186 nm and a DL% of 2.9% for MePD. They showed good cytocompatibility, significantly reducing IL-6 and IL-8 levels. Spray drying yielded microparticles with a fine particle fraction (FPF) of 62.3% and a mass median aerodynamic diameter (MMAD) of 3.9 m. Inclusion of LPHNPs@MePD (0.25% w/v) resulted in FPF and MMAD values of 56.7% and 4.4 m. In conclusion, this study described the production of novel inhalable powders as carriers for MePD-loaded nanostructures with favorable physicochemical properties, cytocompatibility, and promising aerosol performance, indicating their potential as an effective inhalable therapy for lung inflammation with corticosteroids, especially for treating chronic diseases.File | Dimensione | Formato | |
---|---|---|---|
pubbl82_Pharmaceutics2024-compresso.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
838.71 kB
Formato
Adobe PDF
|
838.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.