The “Cell Cycle Hypothesis” suggests that the abnormal re-entry of neurons into the cell division cycle leads to neurodegeneration, a mechanism supported by in vitro studies on neuronal-like cells treated with the hyperphosphorylating agent forskolin. Pterostilbene, a bioavailable compound found in foods such as blueberries and grapes, may exert neuroprotective effects and could serve as a potential adjunct therapy for neurodegenerative diseases. Methods. In this study, we investigated the effects of pterostilbene on neuronal-like cells derived from the human neuroblastoma SK-N-BE cell line, where cell cycle reactivation was induced by forskolin treatment. We analyzed molecular endpoints associated with differentiated versus replicative cell states, specifically the following: (a) the expression of cyclin CCND1, (b) the Ki67 cell proliferation marker, (c) the AT8 nuclear tau epitope, and (d) genome-wide DNA methylation changes. Results. Our findings indicate that pterostilbene exerts distinct effects on the cell division cycle depending on the cellular state, with neuroprotective benefits observed in differentiated neuronal-like cells, but not in cells undergoing induced division. Additionally, pterostilbene alters DNA methylation patterns. Conclusion. These results suggest that pterostilbene may offer neuroprotective advantages for differentiated neuronal-like cells. However, further studies are required to confirm these effects in vivo by examining specific biomarkers in human populations consuming pterostilbene-containing foods.

Francesca Bruno, F.N. (2024). Effects of Pterostilbene on the Cell Division Cycle of a Neuroblastoma Cell Line. NUTRIENTS, 16(23), 1-15 [10.3390/nu16234152].

Effects of Pterostilbene on the Cell Division Cycle of a Neuroblastoma Cell Line

Flores Naselli
Co-primo
;
Sara Volpes;Paola Sofia Cardinale;Fabio Caradonna
Ultimo
2024-11-29

Abstract

The “Cell Cycle Hypothesis” suggests that the abnormal re-entry of neurons into the cell division cycle leads to neurodegeneration, a mechanism supported by in vitro studies on neuronal-like cells treated with the hyperphosphorylating agent forskolin. Pterostilbene, a bioavailable compound found in foods such as blueberries and grapes, may exert neuroprotective effects and could serve as a potential adjunct therapy for neurodegenerative diseases. Methods. In this study, we investigated the effects of pterostilbene on neuronal-like cells derived from the human neuroblastoma SK-N-BE cell line, where cell cycle reactivation was induced by forskolin treatment. We analyzed molecular endpoints associated with differentiated versus replicative cell states, specifically the following: (a) the expression of cyclin CCND1, (b) the Ki67 cell proliferation marker, (c) the AT8 nuclear tau epitope, and (d) genome-wide DNA methylation changes. Results. Our findings indicate that pterostilbene exerts distinct effects on the cell division cycle depending on the cellular state, with neuroprotective benefits observed in differentiated neuronal-like cells, but not in cells undergoing induced division. Additionally, pterostilbene alters DNA methylation patterns. Conclusion. These results suggest that pterostilbene may offer neuroprotective advantages for differentiated neuronal-like cells. However, further studies are required to confirm these effects in vivo by examining specific biomarkers in human populations consuming pterostilbene-containing foods.
29-nov-2024
Settore BIOS-14/A - Genetica
Settore BIOS-10/A - Biologia cellulare e applicata
Francesca Bruno, F.N. (2024). Effects of Pterostilbene on the Cell Division Cycle of a Neuroblastoma Cell Line. NUTRIENTS, 16(23), 1-15 [10.3390/nu16234152].
File in questo prodotto:
File Dimensione Formato  
nutrients-16-04152 (1).pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/665007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact