We consider the acoustic field scattered by a bounded impenetrable obsta- cle and we study its dependence upon a certain set of parameters. As usual, the problem is modeled by an exterior Dirichlet problem for the Helmholtz equation ∆u + k2u = 0. We show that the solution u and its far field pattern u∞ depend real analytically on the shape of the obstacle, the wave number k, and the Dirichlet datum. We also prove a similar result for the corresponding Dirichlet-to-Neumann map.

Dalla Riva M., Luzzini P., Molinarolo R., Musolino P. (2024). MULTI-PARAMETER PERTURBATIONS FOR THE SPACE-PERIODIC HEAT EQUATION. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 23(2), 144-164 [10.3934/cpaa.2024004].

MULTI-PARAMETER PERTURBATIONS FOR THE SPACE-PERIODIC HEAT EQUATION

Dalla Riva M.;
2024-01-01

Abstract

We consider the acoustic field scattered by a bounded impenetrable obsta- cle and we study its dependence upon a certain set of parameters. As usual, the problem is modeled by an exterior Dirichlet problem for the Helmholtz equation ∆u + k2u = 0. We show that the solution u and its far field pattern u∞ depend real analytically on the shape of the obstacle, the wave number k, and the Dirichlet datum. We also prove a similar result for the corresponding Dirichlet-to-Neumann map.
2024
Dalla Riva M., Luzzini P., Molinarolo R., Musolino P. (2024). MULTI-PARAMETER PERTURBATIONS FOR THE SPACE-PERIODIC HEAT EQUATION. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 23(2), 144-164 [10.3934/cpaa.2024004].
File in questo prodotto:
File Dimensione Formato  
Multi-parameter perturbations for the space-periodic.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 6.03 MB
Formato Adobe PDF
6.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/664787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact