Let Delta_k be the Dunkl generalized Laplacian operator associated to a root system R of R^N and a nonnegative multiplicity function k defined on R and invariant by the finite reflection group W. In this paper, we establish Liouville-type theorems for the semilinear inequality -Delta_k u >= |u|(p )in R-N and the system of inequalities -Delta_k u >= |v|(p), -Delta_k v >= |u|(q )in R^N, where N >= 1 and p, q >1. To the best of our knowledge, this contribution is the first work dealing with Liouville-type results for nonlinear problems involving the Dunkl Laplacian.

Jleli M., Samet B., Vetro C. (2024). Liouville-type results for semilinear inequalities involving the Dunkl Laplacian operator. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 1-16 [10.1080/17476933.2024.2384485].

Liouville-type results for semilinear inequalities involving the Dunkl Laplacian operator

Vetro C.
2024-08-13

Abstract

Let Delta_k be the Dunkl generalized Laplacian operator associated to a root system R of R^N and a nonnegative multiplicity function k defined on R and invariant by the finite reflection group W. In this paper, we establish Liouville-type theorems for the semilinear inequality -Delta_k u >= |u|(p )in R-N and the system of inequalities -Delta_k u >= |v|(p), -Delta_k v >= |u|(q )in R^N, where N >= 1 and p, q >1. To the best of our knowledge, this contribution is the first work dealing with Liouville-type results for nonlinear problems involving the Dunkl Laplacian.
13-ago-2024
Settore MATH-03/A - Analisi matematica
Jleli M., Samet B., Vetro C. (2024). Liouville-type results for semilinear inequalities involving the Dunkl Laplacian operator. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 1-16 [10.1080/17476933.2024.2384485].
File in questo prodotto:
File Dimensione Formato  
2024CVEE-Liouville-type_results_for_semilinear_inequalities_involving_the_Dunkl_Laplacian_operator.pdf

Solo gestori archvio

Descrizione: articolo principale
Tipologia: Versione Editoriale
Dimensione 412.12 kB
Formato Adobe PDF
412.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/663917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact