This paper is devoted to the study of a nonlinear differential prob- lem involving the double phase operator with variable exponents and Robin boundary conditions with critical growth. In particular, exploiting a recent re- sult on a new equivalent norm in the Musielak-Orlicz Sobolev space, we obtain the existence of two nontrivial weak solutions through critical point theory.

Eleonora Amoroso, Valeria Morabito (2024). NONLINEAR ROBIN PROBLEMS WITH DOUBLE PHASE VARIABLE EXPONENT OPERATOR. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S [10.3934/dcdss.2024047].

NONLINEAR ROBIN PROBLEMS WITH DOUBLE PHASE VARIABLE EXPONENT OPERATOR

Eleonora Amoroso
;
2024-01-01

Abstract

This paper is devoted to the study of a nonlinear differential prob- lem involving the double phase operator with variable exponents and Robin boundary conditions with critical growth. In particular, exploiting a recent re- sult on a new equivalent norm in the Musielak-Orlicz Sobolev space, we obtain the existence of two nontrivial weak solutions through critical point theory.
2024
Settore MATH-03/A - Analisi matematica
Eleonora Amoroso, Valeria Morabito (2024). NONLINEAR ROBIN PROBLEMS WITH DOUBLE PHASE VARIABLE EXPONENT OPERATOR. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S [10.3934/dcdss.2024047].
File in questo prodotto:
File Dimensione Formato  
09. AmoMo_Nonlinear Robin problems with double phase variable exponent operator.pdf

Solo gestori archvio

Descrizione: Il testo pieno dell’articolo è disponibile al seguente link: https://www.aimsciences.org//article/doi/10.3934/dcdss.2024047
Tipologia: Versione Editoriale
Dimensione 392.6 kB
Formato Adobe PDF
392.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/662098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact