In this paper we study a complete second order differential equation of Sturm-Liouville type under Dirichlet boundary condition and where the variable coefficients are allowed to be sign changing. Through critical point theory, we obtain the existence of two nontrivial generalized solutions by requiring a specific growth on the nonlinearity. Moreover, the solutions turn out to be nonnegative and with opposite energy sign.

Amoroso E., D'Agui G., Morabito V. (2024). On a complete parametric Sturm-Liouville problem with sign changing coefficients. AIMS MATHEMATICS, 9(3), 6499-6512 [10.3934/math.2024316].

On a complete parametric Sturm-Liouville problem with sign changing coefficients

Amoroso E.;D'Agui G.
;
2024-02-06

Abstract

In this paper we study a complete second order differential equation of Sturm-Liouville type under Dirichlet boundary condition and where the variable coefficients are allowed to be sign changing. Through critical point theory, we obtain the existence of two nontrivial generalized solutions by requiring a specific growth on the nonlinearity. Moreover, the solutions turn out to be nonnegative and with opposite energy sign.
6-feb-2024
Settore MATH-03/A - Analisi matematica
Amoroso E., D'Agui G., Morabito V. (2024). On a complete parametric Sturm-Liouville problem with sign changing coefficients. AIMS MATHEMATICS, 9(3), 6499-6512 [10.3934/math.2024316].
File in questo prodotto:
File Dimensione Formato  
07. AmoDaMo_On a complete parametric Sturm-Liouville problem with sign changing coefficients.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 256.83 kB
Formato Adobe PDF
256.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/662096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact