This paper presents the numerical and experimental validation of the analytical elastoplastic damaging model proposed in the companion paper (Part I). The validation was carried out by describing the pullout failure of epoxy adhesive anchors. Pullout tests were simulated numerically and performed experimentally. Several specimens made of a rebar embedded in a hardened concrete cylinder by means of polyester resin were tested. Conventional strain gauges and acoustic emission (AE) sensors were used to evaluate the structural response of the system and to monitor the onset and progression of structural damage, respectively. The parametric analysis and the moment tensor analysis of the AE data were used to discriminate among different sources of damage. The results show the ability of the model to predict the response of the anchors and the suitability of the AE method to monitor damage onset and propagation and to discriminate among different source of damage.
Spada, A., Rizzo, P., Giambanco, G. (2011). Elastoplastic Damaging Model for Adhesive Anchor Systems. II: Numerical and Experimental Validation. JOURNAL OF ENGINEERING MECHANICS, 137, 862-876 [10.1061/(ASCE)EM.1943-7889.0000288].
Elastoplastic Damaging Model for Adhesive Anchor Systems. II: Numerical and Experimental Validation
SPADA, Antonino;GIAMBANCO, Giuseppe
2011-01-01
Abstract
This paper presents the numerical and experimental validation of the analytical elastoplastic damaging model proposed in the companion paper (Part I). The validation was carried out by describing the pullout failure of epoxy adhesive anchors. Pullout tests were simulated numerically and performed experimentally. Several specimens made of a rebar embedded in a hardened concrete cylinder by means of polyester resin were tested. Conventional strain gauges and acoustic emission (AE) sensors were used to evaluate the structural response of the system and to monitor the onset and progression of structural damage, respectively. The parametric analysis and the moment tensor analysis of the AE data were used to discriminate among different sources of damage. The results show the ability of the model to predict the response of the anchors and the suitability of the AE method to monitor damage onset and propagation and to discriminate among different source of damage.File | Dimensione | Formato | |
---|---|---|---|
ASCE-EMENG-744_JEM.pdf
accesso aperto
Descrizione: Articolo pubblicato
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.